Skip to main content
Log in

Simultaneous Feedback Edge Set: A Parameterized Perspective

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

Agrawal et al. (ACM Trans Comput Theory 10(4):18:1–18:25, 2018. https://doi.org/10.1145/3265027) studied a simultaneous variant of the classic Feedback Vertex Set problem, called Simultaneous Feedback Vertex Set (Sim-FVS). Here, we consider the edge variant of the problem, namely, Simultaneous Feedback Edge Set (Sim-FES). In this problem, the input is an n-vertex graph G, a positive integer k, and a coloring function col:\(E(G) \rightarrow 2^{[\alpha ]}\), and the objective is to check whether there is an edge subset S of cardinality k in G such that for each \(i \in [\alpha ]\), \(G_i - S\) is acyclic. Unlike the vertex variant of the problem, when \(\alpha =1\), the problem is equivalent to finding a maximal spanning forest and hence it is polynomial time solvable. We show that for \(\alpha =3\), Sim-FES is NP-hard, and does not admit an algorithm of running time \(2^{o(k)}n^{{{\mathcal {O}}}(1)}\) unless ETH fails. This hardness result is complimented by an FPT algorithm for Sim-FES running in time \(2^{\omega k \alpha +\alpha \log k} n^{{{\mathcal {O}}}(1)}\) where \(\omega\) is the exponent in the running time of matrix multiplication. The same algorithm gives a polynomial time algorithm for the case when \(\alpha =2\). We also give a kernel for Sim-FES with \((k\alpha )^{{\mathcal {O}}(\alpha )}\) vertices. Finally, we consider a “dual” version of the problem called Maximum Simultaneous Acyclic Subgraph and give an FPT algorithm with running time \(2^{\omega q \alpha }n^{{\mathcal {O}}(1)}\), where q is the number of edges in the output subgraph.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. For an integer \(\alpha \in {{\mathbb {N}}}\), \([\alpha ]\) denotes the set \(\{1,2,\ldots ,\alpha \}\).

  2. \({\mathcal {O}}^{\star }\) notation suppresses polynomial factors in the running-time expression.

References

  1. Agrawal, A., Lokshtanov, D., Mouawad, A.E., Saurabh, S.: Simultaneous feedback vertex set: a parameterized perspective. ACM Trans. Comput. Theory 10(4), 18:1–18:25 (2018). https://doi.org/10.1145/3265027

    Article  MathSciNet  MATH  Google Scholar 

  2. Bafna, V., Berman, P., Fujito, T.: A 2-approximation algorithm for the undirected feedback vertex set problem. SIAM J. Discrete Math. 12(3), 289–297 (1999)

    Article  MathSciNet  Google Scholar 

  3. Cai, L., Ye, J.: Dual connectedness of edge-bicolored graphs and beyond. Math. Found. Comput. Sci. 8635, 141–152 (2014)

    MathSciNet  MATH  Google Scholar 

  4. Cygan, M., Fomin, F.V., Kowalik, L., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, Berlin (2015)

    Book  Google Scholar 

  5. Cygan, M., Nederlof, J., Pilipczuk, M., Pilipczuk, M., van Rooij, J.M., Wojtaszczyk, J.O.: Solving connectivity problems parameterized by treewidth in single exponential time. In: IEEE 52nd Annual Symposium on Foundations of Computer Science (FOCS), pp. 150–159 (2011)

  6. Diestel, R.: Graph Theory. Graduate Texts in Mathematics, vol. 173, 4th edn. Springer, Berlin (2012)

    MATH  Google Scholar 

  7. Fomin, F.V., Gaspers, S., Lokshtanov, D., Saurabh, S.: Exact algorithms via monotone local search. In: Proceedings of the 48th Annual ACM SIGACT Symposium on Theory of Computing, STOC, pp. 764–775 (2016)

  8. Fomin, F.V., Lokshtanov, D., Saurabh, S., Zehavi, M.: Kernelization: Theory of Parameterized Preprocessing. Cambridge University Press, Cambridge (2019). https://doi.org/10.1017/9781107415157

    Book  MATH  Google Scholar 

  9. Garey, M., Johnson, D., Stockmeyer, L.: Some simplified NP-complete graph problems. Theor. Comput. Sci. 1(3), 237–267 (1976). https://doi.org/10.1016/0304-3975(76)90059-1

    Article  MathSciNet  MATH  Google Scholar 

  10. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New York (1979)

    MATH  Google Scholar 

  11. Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential complexity? J. Comput. Syst. Sci. 63(4), 512–530 (2001)

    Article  MathSciNet  Google Scholar 

  12. Johnson, D.S., Szegedy, M.: What are the least tractable instances of max independent set? In: Proceedings of the Tenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’99, pp. 927–928. Society for Industrial and Applied Mathematics, Philadelphia, PA, USA (1999)

  13. Kociumaka, T., Pilipczuk, M.: Faster deterministic feedback vertex set. Inf. Process. Lett. 114(10), 556–560 (2014)

    Article  MathSciNet  Google Scholar 

  14. Lokshtanov, D., Misra, P., Panolan, F., Saurabh, S.: Deterministic truncation of linear matroids. ACM Trans. Algorithms 14(2), 14:1–14:20 (2018). https://doi.org/10.1145/3170444

    Article  MathSciNet  MATH  Google Scholar 

  15. Lovász, L.: Matroid matching and some applications. J. Comb. Theory Ser. B 28(2), 208–236 (1980)

    Article  MathSciNet  Google Scholar 

  16. Marx, D.: A parameterized view on matroid optimization problems. Theor. Comput. Sci. 410(44), 4471–4479 (2009)

    Article  MathSciNet  Google Scholar 

  17. Oxley, J.G.: Matroid Theory, vol. 3. Oxford University Press, Oxford (2006)

    MATH  Google Scholar 

  18. Thomassé, S.: A \(4k^2\) kernel for feedback vertex set. ACM Trans. Algorithms 6(2), 321–328 (2010)

    Article  MathSciNet  Google Scholar 

  19. Williams, V.V.: Multiplying matrices faster than Coppersmith–Winograd. In: Proceedings of the 44th annual ACM symposium on Theory of computing, pp. 887–898 (2012)

  20. Ye, J.: A note on finding dual feedback vertex set (2015)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fahad Panolan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A preliminary version of this paper appeared in the proceedings of the 27th International Symposium Algorithms and Computation (ISAAC 2016). The research leading to these results has received funding from the European Research Council (ERC) via grants Rigorous Theory of Preprocessing, reference 267959 and PARAPPROX, reference 306992.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agrawal, A., Panolan, F., Saurabh, S. et al. Simultaneous Feedback Edge Set: A Parameterized Perspective. Algorithmica 83, 753–774 (2021). https://doi.org/10.1007/s00453-020-00773-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-020-00773-9

Keywords

Navigation