Skip to main content
Log in

Enumerating k-Arc-Connected Orientations

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

We study the problem of enumerating the k-arc-connected orientations of a graph G, i.e., generating each exactly once. A first algorithm using submodular flow optimization is easy to state, but intricate to implement. In a second approach we present a simple algorithm with \(O(knm^2)\) time delay and amortized time \(O(m^2)\), which improves over the analysis of the submodular flow algorithm. As ingredients, we obtain enumeration algorithms for the \(\alpha \)-orientations of a graph G in \(O(m^2)\) time delay and for the outdegree sequences attained by k-arc-connected orientations of G in \(O(knm^2)\) time delay.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. We use the term enumeration instead of the sometimes used terms generation or listing.

  2. When there is no ambiguity, we will abbreviate k-arc-connected by saying k-connected.

References

  1. Aichholzer, O., Cardinal, J., Huynh, T., Knauer, K., Mütze, T., Steiner, R., Vogtenhuber, B.: Flip distances between graph orientations. In: Sau, I., Thilikos, D.M. (eds.) Graph-Theoretic Concepts in Computer Science, pp. 120–134. Springer, Cham (2019)

    MATH  Google Scholar 

  2. Bang-Jensen, J., Huang, J., Zhu, X.: Completing orientations of partially oriented graphs. J. Graph Theory 87(3), 285–304 (2018)

    MathSciNet  MATH  Google Scholar 

  3. Barbosa, V.C., Szwarcfiter, J.L.: Generating all the acyclic orientations of an undirected graph. Inf. Process. Lett. 72(1), 71–74 (1999)

    MathSciNet  MATH  Google Scholar 

  4. Blind, S.: Output-sensitive algorithms for enumeration problems in graphs. Ph.D. thesis, Université de Lorraine (2019)

  5. Brehm, E.: 3-orientations and Schnyder-3-tree-decompositions. Diploma thesis, FU Berlin (2000)

  6. Brightwell, G.: On the complexity of diagram testing. Order 10(4), 297–303 (1993)

    MathSciNet  MATH  Google Scholar 

  7. Conte, A.: Enumeration algorithms for real-world networks: efficiency and beyond. Ph.D. thesis, Università di Pisa (2018)

  8. Conte, A., Grossi, R., Marino, A., Rizzi, R.: Efficient enumeration of graph orientations with sources. Discrete Appl. Math. 246, 22–37 (2018)

    MathSciNet  MATH  Google Scholar 

  9. Conte, A., Grossi, R., Marino, A., Rizzi, R., Versari, L.: Directing Road Networks by Listing Strong Orientations, pp. 83–95. Springer, Berlin (2016)

    MATH  Google Scholar 

  10. Creignou, N., Kröll, M., Pichler, R., Skritek, S., Vollmer, H.: A complexity theory for hard enumeration problems. Discrete Appl. Math. 268, 191–209 (2019)

    MathSciNet  MATH  Google Scholar 

  11. de Gevigney, O.D.: On Frank’s conjecture on \(k\)-connected orientations. J. Combin. Theory Ser. B 141, 105–114 (2020)

    MathSciNet  MATH  Google Scholar 

  12. Dinits, E.A.: Algorithm for solution of a problem of maximum flow in a network with power estimation. Sov. Math. Dokl. 11, 1277–1280 (1970)

    MATH  Google Scholar 

  13. Edmonds, J., Karp, R.M.: Theoretical improvements in algorithmic efficiency for network flow problems. J. Assoc. Comput. Mach. 19, 248–264 (1972)

    MATH  Google Scholar 

  14. Ehrlich, G.: Loopless algorithms for generating permutations, combinations, and other combinatorial configurations. J. ACM 20(3), 500–513 (1973)

    MathSciNet  MATH  Google Scholar 

  15. Felsner, S.: Lattice structures from planar graphs. Electron. J. Combin. 11(1) (2004). Research Paper 15

  16. Felsner, S.: Rectangle and square representations of planar graphs. In: Pach, J. (ed.) Thirty Essays on Geometric Graph Theory, pp. 213–248. Springer, New York (2013)

    Google Scholar 

  17. Felsner, S., Schrezenmaier, H., Steiner, R.: Pentagon contact representations. Electron. J. Combin. 25(3) (2018). Paper 3.39, 38

  18. Frank, A.: An algorithm for submodular functions on graphs. Ann. Discrete Math. 16, 97–120 (1982)

    MathSciNet  MATH  Google Scholar 

  19. Frank, A.: A note on \(k\)-strongly connected orientations of an undirected graph. Discrete Math. 39(1), 103–104 (1982)

    MathSciNet  MATH  Google Scholar 

  20. Gabow, H.N.: A framework for cost-scaling algorithms for submodular flow problems. In: 34th Annual Symposium on Foundations of Computer Science, Palo Alto, USA, Nov 1993, pp. 449–458 (1993)

  21. Gabow, H.N.: Efficient splitting off algorithms for graphs. In: Proceedings of the Twenty-Sixth Annual ACM Symposium on Theory of Computing, STOC ’94, pp. 696–705. ACM, New York (1994)

  22. Gabow, H.N.: Centroids, representations, and submodular flows. J. Algorithms 18(3), 586–628 (1995)

    MathSciNet  MATH  Google Scholar 

  23. Gilmer, P.M., Litherland, R.A.: The duality conjecture in formal knot theory. Osaka J. Math. 23(1), 229–247 (1986)

    MathSciNet  MATH  Google Scholar 

  24. Gleiss, P.M., Leydold, J., Stadler, P.F.: Circuit bases of strongly connected digraphs. Discuss. Math. Graph Theory 23(2), 241–260 (2003)

    MathSciNet  MATH  Google Scholar 

  25. Godsil, C., Royle, G.: Algebraic Graph Theory, vol. 207. Springer, New York (2001)

    MATH  Google Scholar 

  26. Gonçalves, D., Lévêque, B., Pinlou, A.: Triangle contact representations and duality. Discrete Comput. Geom. 48(1), 239–254 (2012)

    MathSciNet  MATH  Google Scholar 

  27. Habib, M., Medina, R., Nourine, L., Steiner, G.: Efficient algorithms on distributive lattices. Discrete Appl. Math. 110(2), 169–187 (2001)

    MathSciNet  MATH  Google Scholar 

  28. Iwata, S., Kobayashi, Y.: An algorithm for minimum cost arc-connectivity orientations. Algorithmica 56(4), 437–447 (2010)

    MathSciNet  MATH  Google Scholar 

  29. Knauer, U., Knauer, K.: Algebraic Graph Theory. Morphisms, Monoids and Matrices, vol. 41, 2 revised and extended edn. De Gruyter, Berlin (2019)

    MATH  Google Scholar 

  30. Lam, P.C.B., Zhang, H.: A distributive lattice on the set of perfect matchings of a plane bipartite graph. Order 20(1), 13–29 (2003)

    MathSciNet  MATH  Google Scholar 

  31. Lau, L.C., Yung, C.K.: Efficient edge splitting-off algorithms maintaining all-pairs edge-connectivities. SIAM J. Comput. 42(3), 1185–1200 (2013)

    MathSciNet  MATH  Google Scholar 

  32. Lovász, L.: Combinatorial Problems and Exercises. North-Holland, Amsterdam (1979)

    MATH  Google Scholar 

  33. Menger, K.: Zur allgemeinen Kurventheorie. Fundam. Math. 10(1), 96–115 (1927)

    MATH  Google Scholar 

  34. Nash-Williams, C.S.J.A.: On orientations, connectivity and odd-vertex-pairings in finite graphs. Can. J. Math. 12, 555–567 (1960)

    MathSciNet  MATH  Google Scholar 

  35. Neumann-Lara, V.: Vertex colourings in digraphs, some problems. Technical report, Waterloo, Canada (1985)

  36. Orlin, J.B.: Max flows in \(O(nm)\) time, or better. In: Proceedings of the 45th Annual ACM Symposium on Theory of Computing, STOC ’13. Palo Alto, CA, USA, June 1–4, 2013, pp. 765–774 (2013)

  37. Propp, J.: Lattice structure for orientations of graphs (2002). ArXiv:math/0209005

  38. Pruesse, G., Ruskey, F.: Gray codes from antimatroids. Order 10(3), 239–252 (1993)

    MathSciNet  MATH  Google Scholar 

  39. Rémila, E.: The lattice structure of the set of domino tilings of a polygon. Theoret. Comput. Sci. 322(2), 409–422 (2004)

    MathSciNet  MATH  Google Scholar 

  40. Squire, M.B.: Generating the acyclic orientations of a graph. J. Algorithms 26(2), 275–290 (1998)

    MathSciNet  MATH  Google Scholar 

  41. The Sage Developers. SageMath, the Sage Mathematics Software System (Version 9.1)

  42. Thomassen, C.: Strongly 2-connected orientations of graphs. J. Combin. Theory Ser. B 110, 67–78 (2015)

    MathSciNet  MATH  Google Scholar 

  43. Thurston, W.P.: Conway’s tiling groups. Am. Math. Mon. 97(8), 757–773 (1990)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We wish to thank Nadia Creignou and Frédéric Olive for fruitful discussions in an early stage of this paper. A preliminary version of the results obtained in this work was presented at WEPA 2018: Second Workshop on Enumeration Problems and Applications which was held in Pisa on November 2018. The authors wish to thank the organizers of this workshop.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Petru Valicov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The first author was supported by the French ANR project GraphEn: ANR-15-CE40-0009. The second and third authors were supported by the French ANR project DISTANCIA: ANR-17-CE40-0015. The second author moreover was supported by ANR grant GATO: ANR-16-CE40-0009-01 and by the Spanish Ministerio de Economía, Industria y Competitividad through Grant RYC-2017-22701.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blind, S., Knauer, K. & Valicov, P. Enumerating k-Arc-Connected Orientations. Algorithmica 82, 3588–3603 (2020). https://doi.org/10.1007/s00453-020-00738-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-020-00738-y

Keywords

Navigation