Skip to main content
Log in

Parameterized Leaf Power Recognition via Embedding into Graph Products

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

The k-leaf power graph G of a tree T is a graph whose vertices are the leaves of T and whose edges connect pairs of leaves at unweighted distance at most k in T. Recognition of the k-leaf power graphs for \(k \ge 7\) is still an open problem. In this paper, we provide two algorithms for this problem for sparse leaf power graphs. Our results shows that the problem of recognizing these graphs is fixed-parameter tractable when parameterized both by k and by the degeneracy of the given graph. To prove this, we first describe how to embed a leaf root of a leaf power graph into a product of the graph with a cycle graph. We bound the treewidth of the resulting product in terms of k and the degeneracy of G. The first presented algorithm uses methods based on monadic second-order logic (\({\text{MSO}}_2\)) to recognize the existence of a leaf power as a subgraph of the graph product. Using the same embedding in the graph product, the second algorithm presents a dynamic programming approach to solve the problem and provide a better dependence on the parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Alon, N., Gutner, S.: Linear time algorithms for finding a dominating set of fixed size in degenerated graphs. Algorithmica 54(4), 544 (2009)

    Article  MathSciNet  Google Scholar 

  2. Arnborg, S., Lagergren, J., Seese, D.: Easy problems for tree-decomposable graphs. J. Algorithms 12(2), 308–340 (1991). https://doi.org/10.1016/0196-6774(91)90006-K

    Article  MathSciNet  MATH  Google Scholar 

  3. Bannach, M., Berndt, S.: Practical access to dynamic programming on tree decompositions. In: Azar, Y., Bast, H., Herman, G. (eds.) 26th Annual European Symposium on Algorithms (ESA 2018), Leibniz International Proceedings in Informatics (LIPIcs), vol. 112, pp. 6:1–6:13. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany (2018). https://doi.org/10.4230/LIPIcs.ESA.2018.6. http://drops.dagstuhl.de/opus/volltexte/2018/9469

  4. Bannister, M.J., Eppstein, D.: Crossing minimization for 1-page and 2-page drawings of graphs with bounded treewidth. In: International Symposium on Graph Drawing, pp. 210–221. Springer (2014)

  5. Bertelé, U., Brioschi, F.: Nonserial Dynamic Programming. Academic Press, London (1972)

    MATH  Google Scholar 

  6. Bodlaender, H.L.: Dynamic programming on graphs with bounded treewidth. In: International Colloquium on Automata, Languages, and Programming, pp. 105–118. Springer (1988)

  7. Bodlaender, H.L.: A tourist guide through treewidth. Acta Cybern. 11(1–2), 1–21 (1993)

    MathSciNet  MATH  Google Scholar 

  8. Brandstädt, A., Hundt, C.: Ptolemaic graphs and interval graphs are leaf powers. In: Latin American Symposium on Theoretical Informatics, pp. 479–491. Springer (2008)

  9. Brandstädt, A., Hundt, C., Mancini, F., Wagner, P.: Rooted directed path graphs are leaf powers. Discrete Math. 310(4), 897–910 (2010). https://doi.org/10.1016/j.disc.2009.10.006

    Article  MathSciNet  MATH  Google Scholar 

  10. Brandstädt, A., Le, V.B.: Structure and linear time recognition of 3-leaf powers. Inf. Process. Lett. 98(4), 133–138 (2006). https://doi.org/10.1016/j.ipl.2006.01.004

    Article  MathSciNet  MATH  Google Scholar 

  11. Brandstädt, A., Le, V.B., Rautenbach, D.: A forbidden induced subgraph characterization of distance-hereditary 5-leaf powers. Discrete Math. 309(12), 3843–3852 (2009). https://doi.org/10.1016/j.disc.2008.10.025

    Article  MathSciNet  MATH  Google Scholar 

  12. Brandstädt, A., Le, V.B., Sritharan, R.: Structure and linear-time recognition of 4-leaf powers. ACM Trans. Algorithms 5(1), A11:1–A11:22 (2009). https://doi.org/10.1145/1435375.1435386

    Article  MathSciNet  MATH  Google Scholar 

  13. Brandstädt, A., Wagner, P.: On k-versus (k+ 1)-leaf powers. In: International Conference on Combinatorial Optimization and Applications, pp. 171–179. Springer (2008)

  14. Cai, L., Chan, S.M., Chan, S.O.: Random separation: a new method for solving fixed-cardinality optimization problems. In: International Workshop on Parameterized and Exact Computation, pp. 239–250. Springer (2006)

  15. Chang, M.S., Ko, M.T.: The 3-Steiner root problem. In: International Workshop on Graph-Theoretic Concepts in Computer Science, pp. 109–120. Springer (2007)

  16. Chang, M.S., Ko, M.T., Lu, H.I.: Linear-time algorithms for tree root problems. Algorithmica 71(2), 471–495 (2015)

    Article  MathSciNet  Google Scholar 

  17. Chen, Z.Z., Jiang, T., Lin, G.: Computing phylogenetic roots with bounded degrees and errors. SIAM J. Comput. 32(4), 864–879 (2003). https://doi.org/10.1137/S0097539701389154

    Article  MathSciNet  MATH  Google Scholar 

  18. Courcelle, B.: The monadic second-order logic of graphs. I. Recognizable sets of finite graphs. Inf. Comput. 85(1), 12–75 (1990). https://doi.org/10.1016/0890-5401(90)90043-H

    Article  MathSciNet  MATH  Google Scholar 

  19. Courcelle, B.: On the expression of graph properties in some fragments of monadic second-order logic. In: Immerman, N., Kolaitis, P.G. (eds.) Descriptive Complexity and Finite Models: Proceedings of a DIMACS Workshop, January 14–17, 1996, Princeton University, DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 31, pp. 33–62. American Mathematical Society, Providence, RI (1997)

  20. Courcelle, B.: The expression of graph properties and graph transformations in monadic second-order logic. In: Handbook of Graph Grammars and Computing by Graph Transformation, vol. 1, pp. 313–400. World Scientific, River Edge, NJ (1997). https://doi.org/10.1142/9789812384720_0005

  21. Courcelle, B., Engelfriet, J., Rozenberg, G.: Handle-rewriting hypergraph grammars. J. Comput. Syst. Sci. 46(2), 218–270 (1993). https://doi.org/10.1016/0022-0000(93)90004-G

    Article  MathSciNet  MATH  Google Scholar 

  22. Courcelle, B., Makowsky, J.A., Rotics, U.: Linear time solvable optimization problems on graphs of bounded clique-width. Theory Comput. Syst. 33(2), 125–150 (2000). https://doi.org/10.1007/s002249910009

    Article  MathSciNet  MATH  Google Scholar 

  23. Dom, M., Guo, J., Hüffner, F., Niedermeier, R.: Error compensation in leaf root problems. In: International Symposium on Algorithms and Computation, pp. 389–401. Springer (2004)

  24. Dom, M., Guo, J., Hüffner, F., Niedermeier, R.: Extending the tractability border for closest leaf powers. In: International Workshop on Graph-Theoretic Concepts in Computer Science, pp. 397–408. Springer (2005)

  25. Ducoffe, G.: The 4-steiner root problem. In: International Workshop on Graph-Theoretic Concepts in Computer Science, pp. 14–26. Springer (2019)

  26. Ducoffe, G.: Finding cut-vertices in the square roots of a graph. Discrete Appl. Math. 257, 158–174 (2019)

    Article  MathSciNet  Google Scholar 

  27. Eppstein, D., Kindermann, P., Kobourov, S., Liotta, G., Lubiw, A., Maignan, A., Mondal, D., Vosoughpour, H., Whitesides, S., Wismath, S.: On the planar split thickness of graphs. Algorithmica 80(3), 977–994 (2018). https://doi.org/10.1007/s00453-017-0328-y

    Article  MathSciNet  MATH  Google Scholar 

  28. Eppstein, D., Löffler, M., Strash, D.: Listing all maximal cliques in sparse graphs in near-optimal time. In: International Symposium on Algorithms and Computation, pp. 403–414. Springer (2010)

  29. Fitch, W.M., Margoliash, E.: Construction of phylogenetic trees. Science 155(3760), 279–284 (1967). https://doi.org/10.1126/science.155.3760.279

    Article  Google Scholar 

  30. Golovach, P.A., Kratsch, D., Paulusma, D., Stewart, A.: Finding cactus roots in polynomial time. In: International Workshop on Combinatorial Algorithms, pp. 361–372. Springer (2016)

  31. Grohe, M.: Computing crossing numbers in quadratic time. In: Proceedings of the Thirty-Third Annual ACM Symposium on Theory of Computing, pp. 231–236. ACM, New York (2001). https://doi.org/10.1145/380752.380805

  32. Gurski, F., Wanke, E.: The clique-width of tree-power and leaf-power graphs. In: International Workshop on Graph-Theoretic Concepts in Computer Science, pp. 76–85. Springer (2007)

  33. Halin, R.: S-functions for graphs. J. Geom. 8(1–2), 171–186 (1976). https://doi.org/10.1007/BF01917434

    Article  MathSciNet  MATH  Google Scholar 

  34. Hliněný, P.: Branch-width, parse trees, and monadic second-order logic for matroids. J. Combin. Theory Ser. B 96(3), 325–351 (2006). https://doi.org/10.1016/j.jctb.2005.08.005

    Article  MathSciNet  MATH  Google Scholar 

  35. Kennedy, W., Lin, G., Yan, G.: Strictly chordal graphs are leaf powers. J. Discrete Algorithms 4(4), 511–525 (2006). https://doi.org/10.1016/j.jda.2005.06.005

    Article  MathSciNet  MATH  Google Scholar 

  36. Kloks, T.: Treewidth: Computations and Approximations, vol. 842. Springer, Berlin (1994)

    Book  Google Scholar 

  37. Lau, L.C.: Bipartite roots of graphs. ACM Trans. Algorithms (TALG) 2(2), 178–208 (2006)

    Article  MathSciNet  Google Scholar 

  38. Lick, D.R., White, A.T.: k-degenerate graphs. Can. J. Math. 22, 1082–1096 (1970)

    Article  MathSciNet  Google Scholar 

  39. Matula, D.W., Beck, L.L.: Smallest-last ordering and clustering and graph coloring algorithms. J. ACM 30(3), 417–427 (1983). https://doi.org/10.1145/2402.322385

    Article  MathSciNet  MATH  Google Scholar 

  40. Nguyen, N.T., et al.: Hardness results and efficient algorithms for graph powers. In: International Workshop on Graph-Theoretic Concepts in Computer Science, pp. 238–249. Springer (2009)

  41. Nishimura, N., Ragde, P., Thilikos, D.M.: On graph powers for leaf-labeled trees. J. Algorithms 42(1), 69–108 (2002). https://doi.org/10.1006/jagm.2001.1195

    Article  MathSciNet  MATH  Google Scholar 

  42. Rautenbach, D.: Some remarks about leaf roots. Discrete Math. 306(13), 1456–1461 (2006). https://doi.org/10.1016/j.disc.2006.03.030

    Article  MathSciNet  MATH  Google Scholar 

  43. Robertson, N., Seymour, P.D.: Graph minors. II. Algorithmic aspects of tree-width. J. Algorithms 7(3), 309–322 (1986). https://doi.org/10.1016/0196-6774(86)90023-4

    Article  MathSciNet  MATH  Google Scholar 

  44. Tuy, N.N., et al.: The square of a block graph. Discrete Math. 310(4), 734–741 (2010)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This research was supported in part by NSF Grants CCF-1618301 and CCF-1616248.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elham Havvaei.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eppstein, D., Havvaei, E. Parameterized Leaf Power Recognition via Embedding into Graph Products. Algorithmica 82, 2337–2359 (2020). https://doi.org/10.1007/s00453-020-00720-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-020-00720-8

Keywords

Navigation