Skip to main content
Log in

On the Approximate Compressibility of Connected Vertex Cover

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

The Connected Vertex Cover problem, where the goal is to compute a minimum set of vertices in a given graph which forms a vertex cover and induces a connected subgraph, is a fundamental combinatorial problem and has received extensive attention in various subdomains of algorithmics. In the area of kernelization, it is known that this problem is unlikely to have a polynomial kernelization algorithm. However, it has been shown in a recent work of Lokshtanov et al. (Proceedings of the 49th annual ACM SIGACT symposium on theory of computing, STOC 2017, Montreal, QC, Canada, 2017) that if one considered an appropriate notion of approximate kernelization, then this problem parameterized by the solution size does admit an approximate polynomial kernelization. In fact, Lokshtanov et al. were able to obtain a polynomial size approximate kernelization scheme (PSAKS) for Connected Vertex Cover parameterized by the solution size. A PSAKS is essentially a preprocessing algorithm whose error can be made arbitrarily close to 0. In this paper we revisit this problem, and consider parameters that are strictly smaller than the size of the solution and obtain the first polynomial size approximate kernelization schemes for the Connected Vertex Cover problem when parameterized by the deletion distance of the input graph to the class of cographs, the class of bounded treewidth graphs, and the class of all chordal graphs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Bodlaender, H.L., Downey, R.G., Fellows, M.R., Hermelin, D.: On problems without polynomial kernels. J. Comput. Syst. Sci. 75(8), 423–434 (2009)

    Article  MathSciNet  Google Scholar 

  2. Bodlaender, H.L., Jansen, B.M.P., Kratsch, S.: Kernelization lower bounds by cross-composition. SIAM J. Discrete Math. 28(1), 277–305 (2014)

    Article  MathSciNet  Google Scholar 

  3. Bougeret, M., Sau, I.: How much does a treedepth modulator help to obtain polynomial kernels beyond sparse graphs? Algorithmica 81(10), 4043–4068 (2019)

    Article  MathSciNet  Google Scholar 

  4. Cornell, D.G., Rotics, U.: On the relationship between clique-width and treewidth. SIAM J. Comput. 34(4), 825–847 (2005)

    Article  MathSciNet  Google Scholar 

  5. Courcelle, B.: Graph rewriting: an algebraic and logic approach. In: Handbook of Theoretical Computer Science, Volume B: Formal Models and Semantics. Elsevier and MIT Press, pp. 193–242 (1990)

  6. Courcelle, B.: The monadic second-order logic of graphs I: recognizable sets of finite graphs. Inf. Comput. 85, 12–75 (1990)

    Article  MathSciNet  Google Scholar 

  7. Courcelle, B., Kanté, M.M.: Graph operations characterizing rank-width. Discrete Appl. Math. 157(4), 627–640 (2009)

    Article  MathSciNet  Google Scholar 

  8. Cygan, M., Fomin, F.V., Kowalik, L., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: Parameterized Algorithms. Springer, Berlin (2015)

    Book  Google Scholar 

  9. Cygan, M., Lokshtanov, D., Pilipczuk, M., Pilipczuk, M., Saurabh, S.: On the hardness of losing width. Theory Comput. Syst. 54(1), 73–82 (2014)

    Article  MathSciNet  Google Scholar 

  10. Dell, H., Marx, D.: Kernelization of packing problems. In: Proceedings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2012, Kyoto, Japan, January 17–19, 2012, pp. 68–81 (2012)

  11. Dell, H., van Melkebeek, D.: Satisfiability allows no nontrivial sparsification unless the polynomial-time hierarchy collapses. J. ACM 61(4), 23:1–23:27 (2014)

    Article  MathSciNet  Google Scholar 

  12. Dom, M., Lokshtanov, D., Saurabh, S.: Kernelization lower bounds through colors and IDs. ACM Trans. Algorithms 11(2), 13:1–13:20 (2014)

    Article  MathSciNet  Google Scholar 

  13. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Berlin (2012)

    MATH  Google Scholar 

  14. Drucker, A.: New limits to classical and quantum instance compression. SIAM J. Comput. 44(5), 1443–1479 (2015)

    Article  MathSciNet  Google Scholar 

  15. Escoffier, B., Gourvès, L., Monnot, J.: Complexity and approximation results for the connected vertex cover problem in graphs and hypergraphs. J. Discrete Algorithms 8(1), 36–49 (2010)

    Article  MathSciNet  Google Scholar 

  16. Flum, J., Grohe, M.: Parameterized Complexity Theory. Texts in Theoretical Computer Science. An EATCS Series. Springer, Berlin (2006)

    Google Scholar 

  17. Fomin, F.V., Lokshtanov, D., Saurabh, S., Zehavi, M.: Kernelization: Theory of Parameterized Preprocessing. Cambridge University Press, Cambridge (2019)

    MATH  Google Scholar 

  18. Fomin, F.V., Strømme. T.J.F.: Vertex cover structural parameterization revisited. In: Graph-Theoretic Concepts in Computer Science—42nd International Workshop, WG 2016, Istanbul, Turkey, June 22–24, 2016, Revised Selected Papers, pp. 171–182 (2016)

  19. Fortnow, L., Santhanam, R.: Infeasibility of instance compression and succinct PCPs for NP. J. Comput. Syst. Sci. 77(1), 91–106 (2011)

    Article  MathSciNet  Google Scholar 

  20. Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs (Annals of Discrete Mathematics, vol 57). North-Holland, Amsterdam (2004)

    Google Scholar 

  21. Hermelin, D., Kratsch, S., Soltys, K., Wahlström, M., Xi, W.: A completeness theory for polynomial (turing) kernelization. Algorithmica 71(3), 702–730 (2015)

    Article  MathSciNet  Google Scholar 

  22. Hermelin, D., Wu, X.: Weak compositions and their applications to polynomial lower bounds for kernelization. In: Proceedings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2012, Kyoto, Japan, January 17–19, 2012, pp. 104–113 (2012)

  23. Hols, E.-M.C., Kratsch, S.: Smaller parameters for vertex cover kernelization. In: 12th International Symposium on Parameterized and Exact Computation, IPEC 2017, September 6–8, 2017, Vienna, Austria (2017)

  24. Jansen, B.M.P., Bodlaender, H.L.: Vertex cover kernelization revisited—upper and lower bounds for a refined parameter. Theory Comput. Syst. 53(2), 263–299 (2013)

    Article  MathSciNet  Google Scholar 

  25. Jansen, B.M.P., Pilipczuk, M.: Approximation and kernelization for chordal vertex deletion. SIAM J. Discrete Math. 32(3), 2258–2301 (2018)

    Article  MathSciNet  Google Scholar 

  26. Kratsch, S.: Recent developments in kernelization: a survey. Bull. EATCS 113, 2014 (2014)

    MATH  Google Scholar 

  27. Kratsch, S.: A randomized polynomial kernelization for vertex cover with a smaller parameter. SIAM J. Discrete Math. 32(3), 1806–1839 (2018)

    Article  MathSciNet  Google Scholar 

  28. Kratsch, S., Wahlström, M.: Representative sets and irrelevant vertices: new tools for kernelization. J. ACM (Accepted to, 2020)

  29. Krithika, R., Majumdar, D., Raman, V.: Revisiting connected vertex cover: FPT algorithms and lossy kernels. CoRR, arXiv:abs/1711.07872 (2017)

  30. Krithika, R., Majumdar, D., Raman, V.: Revisiting connected vertex cover: FPT algorithms and lossy kernels. Theory Comput. Syst. 62(8), 1690–1714 (2018)

    Article  MathSciNet  Google Scholar 

  31. Lokshtanov, D., Misra, N., Saurabh, S.: Kernelization—preprocessing with a guarantee. In: The Multivariate Algorithmic Revolution and Beyond—Essays Dedicated to Michael R. Fellows on the Occasion of His 60th Birthday, pp. 129–161 (2012)

  32. Lokshtanov, D., Panolan, F., Ramanujan, M.S., Saurabh, S.: Lossy kernelization. In: Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2017, Montreal, QC, Canada, June 19–23, 2017, pp. 224–237, (2017)

  33. Majumdar, D., Raman, V., Saurabh, S.: Polynomial kernels for vertex cover parameterized by small degree modulators. Theory Comput. Syst. 62(8), 1910–1951 (2018)

    Article  MathSciNet  Google Scholar 

  34. Oum, S.: Rank-width and vertex-minors. J. Comb. Theory Ser. B 95(1), 79–100 (2005)

    Article  MathSciNet  Google Scholar 

  35. Savage, C.D.: Depth-first search and the vertex cover problem. Inf. Process. Lett. 14, 233–237 (1982)

    Article  MathSciNet  Google Scholar 

  36. Schrijver, A.: Combinatorial Optimization: Polyhedra and Efficiency. Springer, Berlin (2003)

    MATH  Google Scholar 

  37. Vazirani, V.V.: Approximation Algorithms. Springer, Berlin (2001)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diptapriyo Majumdar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A part of this work was done when the first author was affiliated to The Institute of Mathematical Sciences, HBNI, Chennai, India.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Majumdar, D., Ramanujan, M.S. & Saurabh, S. On the Approximate Compressibility of Connected Vertex Cover. Algorithmica 82, 2902–2926 (2020). https://doi.org/10.1007/s00453-020-00708-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-020-00708-4

Keywords

Navigation