Skip to main content
Log in

The Geodesic Farthest-Point Voronoi Diagram in a Simple Polygon

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

Given a set of point sites in a simple polygon, the geodesic farthest-point Voronoi diagram partitions the polygon into cells, at most one cell per site, such that every point in a cell has the same farthest site with respect to the geodesic metric. We present an \(O(n\log \log n+ m\log m)\)-time algorithm to compute the geodesic farthest-point Voronoi diagram of m point sites in a simple n-gon. This improves the previously best known algorithm by Aronov et al. (Discrete Comput Geom 9(3):217–255, 1993). In the case that all point sites are on the boundary of the simple polygon, we can compute the geodesic farthest-point Voronoi diagram in \(O((n+m) \log \log n)\) time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Notes

  1. The paper [8] shows that their running time is \(O(n+m\log (n+m))\). But it is \(O(n+m\log m)\). To see this, observe that it is O(n) for \(m=O(n/\log n)\). Also, it is \(O(n+m\log m)\) for \(m=\Omega (n/\log n)\).

References

  1. Aggarwal, A., Guibas, L.J., Saxe, J., Shor, P.W.: A linear-time algorithm for computing the Voronoi diagram of a convex polygon. Discrete Comput. Geom. 4(6), 591–604 (1989)

    Article  MathSciNet  Google Scholar 

  2. Ahn, H.-K., Barba, L., Bose, P., Carufel, J.-L., Korman, M., Oh, E.: A linear-time algorithm for the geodesic center of a simple polygon. Discrete Comput. Geom. 56(4), 836–859 (2016)

    Article  MathSciNet  Google Scholar 

  3. Aronov, B., Fortune, S., Wilfong, G.: The furthest-site geodesic Voronoi diagram. Discrete Comput. Geom. 9(3), 217–255 (1993)

    Article  MathSciNet  Google Scholar 

  4. Asano, T., Toussaint, G.: Computing the geodesic center of a simple polygon. Technical Report SOCS-85.32, McGill University (1985)

  5. Chazelle, B.: A theorem on polygon cutting with applications. In: Proceedings of the 23rd Annual Symposium on Foundations of Computer Science (FOCS 1982), pp. 339–349 (1982)

  6. Chazelle, B., Edelsbrunner, H., Grigni, M., Guibas, L., Hershberger, J., Sharir, M., Snoeyink, J.: Ray shooting in polygons using geodesic triangulations. Algorithmica 12(1), 54–68 (1994)

    Article  MathSciNet  Google Scholar 

  7. Guibas, L., Hershberger, J., Leven, D., Sharir, M., Tarjan, R.: Linear-time algorithms for visibility and shortest path problems inside triangulated simple polygons. Algorithmica 2(1), 209–233 (1987)

    Article  MathSciNet  Google Scholar 

  8. Guibas, L.J., Hershberger, J.: Optimal shortest path queries in a simple polygon. J. Comput. Syst. Sci. 39(2), 126–152 (1989)

    Article  MathSciNet  Google Scholar 

  9. Hershberger, J., Suri, S.: Matrix searching with the shortest-path metric. SIAM J. Comput. 26(6), 1612–1634 (1997)

    Article  MathSciNet  Google Scholar 

  10. Klein, R.: Concrete and Abstract Voronoi Diagrams. Springer, Berlin (1989)

    Book  Google Scholar 

  11. Klein, R., Lingas, A.: Hamiltonian abstract Voronoi diagrams in linear time. In: Prooceedings of the 5th International Symposium on Algorithms and Computation (ISAAC 1994), pp. 11–19. Springer, Berlin (1994)

    Chapter  Google Scholar 

  12. Mitchell, J.S.B.: Geometric shortest paths and network optimization. In: Handbook of Computational Geometry, pp. 633–701. Elsevier (2000)

  13. Oh, E., Ahn, H.-K.: Voronoi diagrams for a moderate-sized point-set in a simple polygon. In: Proceedings of the 33rd International Symposium on Computational Geometry (SoCG 2017), vol. 77, pp. 52:1–52:15. Schloss Dagstuhl–Leibniz-Zentrum für Informatik (2017)

  14. Oh, E., Barba, L., Ahn, H.-K.: The farthest-point geodesic Voronoi diagram of points on the boundary of a simple polygon. In: Proceedings of the 32nd International Symposium on Computational Geometry (SoCG 2016), vol. 51, pp. 56:1–56:15. Schloss Dagstuhl–Leibniz-Zentrum für Informatik (2016)

  15. Papadopoulou, E.: \(k\)-pairs non-crossing shortest paths in a simple polygon. Int. J. Comput. Geom. Appl. 9(6), 533–552 (1999)

    Article  MathSciNet  Google Scholar 

  16. Pollack, R., Sharir, M., Rote, G.: Computing the geodesic center of a simple polygon. Discrete Comput. Geom. 4(6), 611–626 (1989)

    Article  MathSciNet  Google Scholar 

  17. Suri, S.: Computing geodesic furthest neighbors in simple polygons. J. Comput. Syst. Sci. 39(2), 220–235 (1989)

    Article  MathSciNet  Google Scholar 

  18. Toussaint, G.T.: An optimal algorithm for computing the relative convex hull of a set of points in a polygon. In: Proceeding of EURASIP-86, Part 2, pp. 853–856 (1986)

Download references

Acknowledgements

Funding was provided by Ministry of Science and ICT (KR) (Grant No. IITP-2017-0-00905).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hee-Kap Ahn.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported by the NRF Grant 2011-0030044 (SRC-GAIA) funded by the government of Korea and the MSIT (Ministry of Science and ICT), Korea, under the SW Starlab support program (IITP-2017-0-00905) supervised by the IITP (Institute for Information & communications Technology Promotion).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oh, E., Barba, L. & Ahn, HK. The Geodesic Farthest-Point Voronoi Diagram in a Simple Polygon. Algorithmica 82, 1434–1473 (2020). https://doi.org/10.1007/s00453-019-00651-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-019-00651-z

Keywords

Navigation