# Minmax Regret *k*-Sink Location on a Dynamic Path Network with Uniform Capacities

- 48 Downloads

## Abstract

In *Dynamic flow networks* an edge’s capacity is the amount of flow (items) that can enter it in unit time. All flow must be moved to sinks and *congestion* occurs if flow has to wait at a vertex for other flow to leave. In the *uniform capacity* variant all edges have the same capacity. The minmax *k*-sink location problem is to place *k* sinks minimizing the maximum time before all items initially on vertices can be evacuated to a sink. The *minmax regret* version introduces uncertainty into the input; the amount at each source is now only specified to within a range. The problem is to find a universal solution (placement of *k* sinks) whose regret (difference from optimal for a given input) is minimized over all inputs consistent with the given range restrictions. The previous best algorithms for the minmax regret version of the *k*-sink location problem on a path with uniform capacities ran in *O*(*n*) time for \(k=1\), \(O(n \log ^ 4 n)\) time for \(k=2\) and \({\varOmega }(n^{k+1})\) for \( k >2\). A major bottleneck to improving those solutions was that minmax regret seemed an inherently *global* property. This paper derives new combinatorial insights that allow decomposition into *local* problems. This permits designing two new algorithms. The first runs in \(O(n^3 \log n)\) time independent of *k* and the second in \(O( n k^2 \log ^{k+1} n)\) time. These improve all previous algorithms for \(k >1\) and, for \(k > 2\), are the first polynomial time algorithms known.

## Keywords

Dynamic flow networks Sink location problems Evacuation Minmax regret## Notes

## Supplementary material

## References

- 1.Aissi, H., Bazgan, C., Vanderpooten, D.: Min–max and min–max regret versions of combinatorial optimization problems: a survey. Eur. J. Oper. Res.
**197**(2), 427–438 (2009)MathSciNetzbMATHGoogle Scholar - 2.Arumugam, G.P., Augustine, J., Golin, M.J., Srikanthan, P.: A polynomial time algorithm for minimax-regret evacuation on a dynamic path. arXiv:1404.5448 (2014)
- 3.Averbakh, I., Berman, O.: Minimax regret p-center location on a network with demand uncertainty. Location Science
**5**(4), 247–254 (1997)zbMATHGoogle Scholar - 4.Averbakh, I., Lebedev, V.: Interval data minmax regret network optimization problems. Discrete Appl. Math.
**138**(3), 289–301 (2004)MathSciNetzbMATHGoogle Scholar - 5.Benkoczi, R., Bhattacharya, B., Higashikawa, Y., Kameda, T., Katoh, N.: Minsum k-sink problem on dynamic flow path networks. In: International Workshop on Combinatorial Algorithms, pp. 78–89. Springer (2018)Google Scholar
- 6.Bentley, J.L.: Multidimensional divide-and-conquer. Commun. ACM
**23**(4), 214–229 (1980)MathSciNetzbMATHGoogle Scholar - 7.Bhattacharya, B., Golin, M.J., Higashikawa, Y., Kameda, T., Katoh, N.: Improved algorithms for computing k-sink on dynamic flow path networks. In: Proceedings of WADS’2017 (2017)Google Scholar
- 8.Bhattacharya, B., Higashikawa, Y., Kameda, T., Katoh, N.: An o (n\(\hat{~}\) 2 log\(\hat{~}\) 2 n) time algorithm for minmax regret minsum sink on path networks. In: 29th International Symposium on Algorithms and Computation (ISAAC 2018) (2018)Google Scholar
- 9.Bhattacharya, B., Kameda, T.: Improved algorithms for computing minmax regret sinks on dynamic path and tree networks. Theor. Comput. Sci.
**607**, 411–425 (2015)MathSciNetzbMATHGoogle Scholar - 10.Bhattacharya, B., Kameda, T., Song, Z.: A linear time algorithm for computing minmax regret 1-median on a tree network. Algorithmica
**70**(1), 2–21 (2014)MathSciNetzbMATHGoogle Scholar - 11.Bhattacharya, B., Kameda, T., Song, Z.: Minmax regret 1-center algorithms for path/tree/unicycle/cactus networks. Discrete Appl. Math.
**195**, 18–30 (2015)MathSciNetzbMATHGoogle Scholar - 12.Bhattacharya, Binay K., Kameda, Tsunehiko: A linear time algorithm for computing minmax regret 1-median on a tree. In: COCOON’2012, pp. 1–12 (2012)Google Scholar
- 13.Brodal, G.S., Georgiadis, L., Katriel, I.: An O(nlogn) version of the Averbakh–Berman algorithm for the robust median of a tree. Oper. Res. Lett.
**36**(1), 14–18 (2008)MathSciNetzbMATHGoogle Scholar - 14.Candia-Véjar, A., Álvarez-Miranda, E., Maculan, N.: Minmax regret combinatorial optimization problems: an algorithmic perspective. RAIRO - Oper. Res.
**45**(2), 101–129 (2011)MathSciNetzbMATHGoogle Scholar - 15.Chen, D., Golin, M.: Sink evacuation on trees with dynamic confluent flows. In: 27th International Symposium on Algorithms and Computation (ISAAC 2016), pp. 25:1–25:13 (2016)Google Scholar
- 16.Cheng, S.-W., Higashikawa, Y., Katoh, N., Ni, G., Su, B., Xu, Y.: Minimax regret 1-sink location problems in dynamic path networks. In: Proceedings of TAMC’2013, pp. 121–132 (2013)Google Scholar
- 17.Conde, E.: A note on the minmax regret centdian location on trees. Oper. Res. Lett.
**36**(2), 271–275 (2008)MathSciNetzbMATHGoogle Scholar - 18.Ford, L.R., Fulkerson, D.R.: Constructing maximal dynamic flows from static flows. Oper. Res.
**6**(3), 419–433 (1958)MathSciNetzbMATHGoogle Scholar - 19.Golin, M.J., Khodabande, H., Qin, B.: Non-approximability and polylogarithmic approximations of the single-sink unsplittable and confluent dynamic flow problems. In: 28th International Symposium on Algorithms and Computation (ISAAC 2017), pp. 41:1–41:13 (2017)Google Scholar
- 20.Higashikawa, Y., Augustine, J., Cheng, S.-W., Golin, M.J., Katoh, N., Ni, G., Bing, S., Yinfeng, X.: Minimax regret 1-sink location problem in dynamic path networks. Theor. Comput. Sci.
**588**(11), 24–36 (2015)MathSciNetzbMATHGoogle Scholar - 21.Higashikawa, Y., Golin, M.J., Katoh, N.: Minimax regret sink location [roblem in dynamic tree networks with uniform capacity. In: Proceedings of the 8’th International Workshop on Algorithms and Computation (WALCOM’2014), pp. 125–137 (2014)Google Scholar
- 22.Higashikawa, Y., Golin, M.J., Katoh, N.: Multiple sink location problems in dynamic path networks. Theoretical Computer Science
**607**, 2–15 (2015)MathSciNetzbMATHGoogle Scholar - 23.Hoppe, B., Tardos, É.: The quickest transshipment problem. Math. Oper. Res.
**25**(1), 36–62 (2000)MathSciNetzbMATHGoogle Scholar - 24.Kamiyama, N.: Studies on quickest flow problems in dynamic networks and arborescence problems in directed graphs: a theoretical approach to evacuation planning in urban areas. Ph.D. thesis, Kyoto University (2009)Google Scholar
- 25.Kouvelis, P., Gang, Y.: Robust Discrete Optimization and Its Applications. Kluwer Academic Publishers, Dordrecht (1997)zbMATHGoogle Scholar
- 26.Li, H., Yinfeng, X.: Minimax regret 1-sink location problem with accessibility in dynamic general networks. Eur. J. Oper. Res.
**250**(2), 360–366 (2016)MathSciNetzbMATHGoogle Scholar - 27.Li, H., Xu, Y., Ni, G.: Minimax regret vertex 2-sink location problem in dynamic path networks. J. Comb. Optim.
**31**(1), 79–94 (2016)MathSciNetzbMATHGoogle Scholar - 28.Mamada, S., Uno, T., Makino, K., Fujishige, S.: An \(O(n \log ^2 n) \)algorithm for the optimal sink location problem in dynamic tree networks. Discrete Appl. Math.
**154**(2387–2401), 251–264 (2006)zbMATHGoogle Scholar - 29.Megiddo, N.: Applying parallel computation algorithms in the design of serial algorithms. J. ACM
**30**(4), 852–865 (1983)MathSciNetzbMATHGoogle Scholar - 30.Ni, G., Xu, Y., Dong, Y.: Minimax regret k-sink location problem in dynamic path networks. In: Proceedings of the 2014 International Conference on Algorithmic Aspects of Information and Management (AAIM 2014) (2014)Google Scholar
- 31.Osborne, M.J., Rubinstein, A.: A Course in Game Theory. MIT Press, Cambridge (1994)zbMATHGoogle Scholar
- 32.Puerto, J., Rodriguez-Chia, A.M., Tamir, A.: Minimax regret single-facility ordered median location problems on networks. INFORMS J. Comput.
**21**(1), 77–87 (2008)MathSciNetzbMATHGoogle Scholar - 33.Puerto, J., Ricca, F., Scozzari, A.: Minimax regret path location on trees. Networks
**58**(2), 147–158 (2011)MathSciNetzbMATHGoogle Scholar - 34.Wang, H.: Minmax regret 1-facility location on uncertain path networks. In: Proceedings of the 24th International Symposium on Algorithms and Computation (ISAAC’13), pp. 733–743 (2013)Google Scholar
- 35.Wang, H.: Minmax regret 1-facility location on uncertain path networks. Eur. J. Oper. Res.
**239**(3), 636–643 (2014)MathSciNetzbMATHGoogle Scholar - 36.Yinfeng, X., Li, H.: Minimax regret 1-sink location problem in dynamic cycle networks. Inf. Process. Lett.
**115**(2), 163–169 (2015)MathSciNetzbMATHGoogle Scholar - 37.Ye, J.-H., Wang, B.-F.: On the minmax regret path median problem on trees. J. Comput. Syst. Sci.
**1**, 1–12 (2015)MathSciNetzbMATHGoogle Scholar - 38.Yu, H.-I., Lin, T.-C., Wang, B.-F.: Improved algorithms for the minmax-regret 1-center and 1-median problems. ACM Trans. Algorithms
**4**(3), 1–27 (2008)MathSciNetzbMATHGoogle Scholar