Skip to main content
Log in

A New Balanced Subdivision of a Simple Polygon for Time-Space Trade-Off Algorithms

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

Given a read-only memory for input and a write-only stream for output, an s-workspace algorithm, for a positive integer parameter s, is an algorithm using only O(s) words of workspace in addition to the memory for the input. In this paper, we present an \(O(n^2/s)\)-time s-workspace algorithm for subdividing a simple n-gon into \(O(\min \{n/s,s\})\) subpolygons of complexity \(O(\max \{n/s,s\})\). As applications of the subdivision, the previously best known time-space trade-offs for the following three geometric problems are improved immediately by adopting the proposed subdivision: (1) computing the shortest path between two points inside a simple n-gon, (2) computing the shortest-path tree from a point inside a simple n-gon, (3) computing a triangulation of a simple n-gon. In addition, we improve the algorithm for problem (2) further by applying different approaches depending on the size of the workspace.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. We say we encounter an extension during the traversal of \(\partial P\) if we reach a foot point or the defining vertex of the extension.

References

  1. Ahn, H.-K., Baraldo, N., Oh, E., Silvestri, F.: A time-space trade-off for triangulations of points in the plane. In: Proceedings of the 23rd Annual International Computing and Combinatorics Conference (COCOON 2017), pp. 3–12 (2017)

  2. Aronov, B., Korman, M., Pratt, S., van Renssen, A., Roeloffzen, M.: Time-space trade-offs for triangulating a simple polygon. J. Comput. Geom. 8(1), 105–124 (2017)

    MathSciNet  MATH  Google Scholar 

  3. Asano, T., Buchin, K., Buchin, M., Korman, M., Mulzer, W., Rote, G., Schulz, A.: Memory-constrained algorithms for simple polygons. Comput. Geom. 46(8), 959–969 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Asano, T., Kirkpatrick, D.: Time-space tradeoffs for all-nearest-larger-neighbors problems. In: Proceedings of the 13th Algorithms and Data Structures Symposium (WADS 2013), pp. 61–72 (2013)

  5. Asano, T., Mulzer, W., Rote, G., Wang, Y.: Constant-work-space algorithms for geometric problems. J. Comput. Geom. 2(1), 46–68 (2011)

    MathSciNet  MATH  Google Scholar 

  6. Asano, T., Mulzer, W., Wang, Y.: Constant-work-space algorithms for shortest paths in trees and simple polygons. J. Graph Algorithms Appl. 15(5), 569–586 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  7. Banyassady, B., Barba, L., Mulzer, W.: Time-space trade-offs for computing Euclidean minimum spanning trees. In: Proceedings of the 13th Latin American Theoretical Informatics Symposium (LATIN 2018), pp. 108–119 (2018)

  8. Banyassady, B., Korman, M., Mulzer, W.: Computational geometry column 67. SIGACT News 49(2), 77–94 (2018)

    Article  MathSciNet  Google Scholar 

  9. Barba, L., Korman, M., Langerman, S., Sadakane, K., Silveira, R.I.: Space-time trade-offs for stack-based algorithms. Algorithmica 72(4), 1097–1129 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chazelle, B.: Triangulating a simple polygon in linear time. Discrete Comput. Geom. 6(3), 485–524 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  11. Darwish, O., Elmasry, A.: Optimal time-space tradeoff for the 2D convex-hull problem. In: Proceedings of the 22nd Annual European Symposium on Algorithms (ESA 2014), pp. 284–295 (2014)

  12. de Berg, M., Cheong, O., van Kreveld, M., Overmars, M.: Computational Geometry: Algorithms and Applications. Springer TELOS, Berlin (2008)

    Book  MATH  Google Scholar 

  13. Frederickson, G.N.: Upper bounds for time-space trade-offs in sorting and selection. J. Comput. Syst. 34(1), 19–26 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  14. Guibas, L., Hershberger, J.: Optimal shortest path queries in a simple polygon. J. Comput. Syst. Sci. 39(2), 126–152 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  15. Guibas, L., Hershberger, J., Leven, D., Sharir, M., Tarjan, R.E.: Linear-time algorithms for visibility and shortest path problems inside triangulated simple polygons. Algorithmica 2(1), 209–233 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  16. Har-Peled, S.: Shortest path in a polygon using sublinear space. J. Comput. Geom. 7(2), 19–45 (2015)

    MathSciNet  MATH  Google Scholar 

  17. Korman, M., Mulzer, W., van Renssen, A., Roeloffzen, M., Seiferth, P., Stein, Y.: Time-space trade-offs for triangulations and Voronoi diagrams. Comput. Geom. 73, 35–45 (2018)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hee-Kap Ahn.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This research was supported by the MSIT (Ministry of Science and ICT), Korea, under the SW Starlab support program (IITP-2017-0-00905) supervised by the IITP (Institute for Information & Communications Technology Promotion).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oh, E., Ahn, HK. A New Balanced Subdivision of a Simple Polygon for Time-Space Trade-Off Algorithms. Algorithmica 81, 2829–2856 (2019). https://doi.org/10.1007/s00453-019-00558-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-019-00558-9

Keywords

Navigation