Advertisement

Algorithmica

, Volume 81, Issue 5, pp 1859–1880 | Cite as

The k-Server Problem with Advice in d Dimensions and on the Sphere

  • Elisabet BurjonsEmail author
  • Dennis Komm
  • Marcel Schöngens
Article
  • 38 Downloads

Abstract

We study the impact of additional information on the hardness of the k-server problem on different metric spaces. To this end, we consider the well-known model of computing with advice. In particular, we design an algorithm for the d-dimensional Euclidean space, which generalizes a known result for the Euclidean plane. As another relevant setting, we investigate a metric space with positive curvature; in particular, the sphere. Both algorithms have constant strict competitive ratios while reading a constant number of advice bits with every request, independent of the number k of servers, and solely depending on parameters of the underlying metric structure.

Keywords

Online algorithms Advice complexity k-Server problem d-Dimensional Euclidean space Sphere Positive curvature 

Notes

References

  1. 1.
    Bansal, N., Buchbinder, N., Mądry, A., Naor, J.: A polylogarithmic-competitive algorithm for the \(k\)-server problem. In: Proceedings of FOCS 2011, pp. 267–276 (2011)Google Scholar
  2. 2.
    Böckenhauer, H.J.., Hromkovič,J., Komm, D., Královič, R., Rossmanith, P.: On the power of randomness versus advice in online computation. In Bordihn, H., Kutrib, M., Truthe, B. (eds.) Languages Alive: Essays Dedicated to Jürgen Dassow on the Occasion of His 65th Birthday, LNCS 7300. Springer (2012)Google Scholar
  3. 3.
    Böckenhauer, H.J., Komm, D., Královič, R., Královič, R., Mömke, T.: On the advice complexity of online problems. In: Proceedings of ISAAC 2009, LNCS 5478, pp. 331–340 (2009)Google Scholar
  4. 4.
    Böckenhauer, H.-J., Komm, D., Královič, R., Královič, R., Mömke, T.: Online algorithms with advice: the tape model. Inf. Comput. 254, 59–83 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Böckenhauer, H.J., Komm, D., Královič, R., Královič, R.: On the advice complexity of the \(k\)-server problem. In: Proceedings of ICALP 2011, LNCS 6755, pp. 207–218 (2011)Google Scholar
  6. 6.
    Böckenhauer, H.-J., Komm, D., Královič, R., Královič, R.: On the advice complexity of the \(k\)-server problem. J. Comput. Syst. Sci. 86, 159–170 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Böckenhauer, H.-J., Komm, D., Královič, R., Rossmanith, P.: The online knapsack problem: advice and randomization. Theor. Comput. Sci. 527, 61–72 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Borodin, A., El-Yaniv, R.: Online Computation and Competitive Analysis. Cambridge University Press, Cambridge (1998)zbMATHGoogle Scholar
  9. 9.
    Boyar, J., Favrholdt, L.M., Kudahl, C., Larsen, K.S., Mikkelsen, J.W.: Online algorithms with advice: a survey. SIGACT News 47(3), 93–129 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Brauchart, J.S., Grabner, P.J.: Distributing many points on spheres: minimal energy and designs. J. Complex. 31(3), 293–326 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Burjons, E., Komm, D., Schöngens, M.: The \(k\)-server problem with advice in d dimensions and on the sphere. In: Proceedings of SOFSEM 2018, LNCS 10706, pp. 155–166. Springer (2018)Google Scholar
  12. 12.
    Chrobak, M., Larmore, L.: The server problem and online games. In: On-Line Algorithms, Proceedings of a DIMACS Workshop, Volume 7 of DIMACS Series in Discrete Mathematics and Computer Science, pp. 11–64. American Mathematical Society (1991)Google Scholar
  13. 13.
    Chrobak, M., Karloff, H.J., Payne, T.H., Vishwanathan, S.: New results on server problems. SIAM J. Discrete Math. 4(2), 172–181 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Damelin, S.B., Maymeskul, V.: On point energies, separation radius and mesh norm for \(s\)-extremal configurations on compact sets in \(^n\). J. Complex. 21(6), 845–863 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Dobrev, S., Edmonds, J., Komm, D., Královič, R., Královič, R., Krug, S., Mömke, T.: Improved analysis of the online set cover problem with advice. Theor. Comput. Sci. 689, 96–107 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Dobrev, S., Královič, R., Pardubská, D.: How much information about the future is needed? In: Proceedings of SOFSEM 2008, LNCS 4910, pp. 247–258. Springer (2008)Google Scholar
  17. 17.
    Dobrev, S., Královič, R., Pardubská, D.: Measuring the problem-relevant information in input. Theor. Inform. Appl. (RAIRO) 43(3), 585–613 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Dobrev, S., Královič, R., Královič, R.: Computing with advice: when knowledge helps. Bull. EATCS 110, 35–51 (2013)zbMATHGoogle Scholar
  19. 19.
    Dohrau, J,: Online makespan scheduling with sublinear advice. In: Proceedings of SOFSEM 2015, LNCS 8939, pp. 177–188. Springer (2015)Google Scholar
  20. 20.
    Emek, Y., Fraigniaud, P., Korman, A., Rosén. A.: Online computation with advice. In: Proceedings of ICALP 2009, LNCS 5555, pp. 427–438. Springer (2009)Google Scholar
  21. 21.
    Emek, Y., Fraigniaud, P., Korman, A., Rosén, A.: Online computation with advice. Theor. Comput. Sci. 412(24), 2642–2656 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Emek, Y., Fraigniaud, P., Korman, A., Rosén, A.: On the additive constant of the \(k\)-server work function algorithm. In: Proceedings of the WAOA 2009, LNCS 5893. Springer (2011)Google Scholar
  23. 23.
    Fiat, A., Woeginger, G.J. (eds.): Online Algorithms—The State of the Art, LNCS 1442. Springer (1998)Google Scholar
  24. 24.
    Gebauer, H., Komm, D., Královič, R., Královič, R., Smula, J.: Disjoint path allocation with sublinear advice. In: Proceedings of COCOON 2015, LNCS 9198, pp. 417–429. Springer (2015)Google Scholar
  25. 25.
    Gupta, S., Kamali, S., López-Ortiz, A.: On advice complexity of the \(k\)-server problem under sparse metrics. Theory Comput. Syst. 59, 476–499 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Hromkovič, J., Královič, R., Královič, R.: Information complexity of online problems. In: Proceedings of MFCS 2010, LNCS 6281, pp. 24–36. Springer (2010)Google Scholar
  27. 27.
    Irani, S., Karlin , A.R.: On online computation. In: Hochbaum ,D. (ed.) Approximation Algorithms for \(N\!P\)-Hard Problems, chapter 13, pp. 521–564 (1997)Google Scholar
  28. 28.
    Komm, D.: An Introduction to Online Computation: Determinism, Randomization, Advice. Springer, Berlin (2016)CrossRefGoogle Scholar
  29. 29.
    Komm, D., Královič, R.: Advice complexity and barely random algorithms. Theor. Inform. Appl. (RAIRO) 45(2), 249–267 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Koutsoupias, E.: The \(k\)-server problem. Comput. Sci. Rev. 3(2), 105–118 (2009)CrossRefzbMATHGoogle Scholar
  31. 31.
    Koutsoupias, E., Papadimitriou, ChH: On the \(k\)-server conjecture. J. ACM Assoc. Comput. Mach. 42(5), 971–983 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Manasse, M.S., McGeoch, L.A., Sleator, DD.: Competitive algorithms for on-line problems. In: Proceedings of STOC 1988, pp. 322–333. Association for Computing Machinery (1988)Google Scholar
  33. 33.
    Preparata, F.P., Shamos, M.: Computational Geometry: An Introduction. Springer, Berlin (1985)CrossRefzbMATHGoogle Scholar
  34. 34.
    Rakhmanov, E.A., Saff, E.B., Zhou, Y.M.: Minimal discrete energy on the sphere. Math. Res. Lett. 1, 647–662 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Renault, M.P., Rosén, A.: On online algorithms with advice for the \(k\)-server problem. Theory Comput. Syst. 56(1), 3–21 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Renault, M.P., Rosén, A., van Stee, R.: Online algorithms with advice for bin packing and scheduling problems. Theor. Comput. Sci. 600, 155–170 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Sleator, D.D., Tarjan, R.E.: Amortized efficiency of list update and paging rules. Commun. ACM 28(2), 202–208 (1985)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Zwillinger, D.: Standard Mathematical Tables and Formulae, 32nd edn. CRC, Boca Raton (2011)zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Computer ScienceETH ZurichZürichSwitzerland
  2. 2.Swiss National Supercomputing CentreLuganoSwitzerland

Personalised recommendations