Skip to main content
Log in

Track Layouts, Layered Path Decompositions, and Leveled Planarity

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

We investigate two types of graph layouts, track layouts and layered path decompositions, and the relations between their associated parameters track-number and layered pathwidth. We use these two types of layouts to characterize leveled planar graphs, which are the graphs with planar leveled drawings with no dummy vertices. It follows from the known NP-completeness of leveled planarity that track-number and layered pathwidth are also NP-complete, even for the smallest constant parameter values that make these parameters nontrivial. We prove that the graphs with bounded layered pathwidth include outerplanar graphs, Halin graphs, and squaregraphs, but that (despite having bounded track-number) series–parallel graphs do not have bounded layered pathwidth. Finally, we investigate the parameterized complexity of these layouts, showing that past methods used for book layouts do not work to parameterize the problem by treewidth or almost-tree number but that the problem is (non-uniformly) fixed-parameter tractable for tree-depth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Abel, Z., Demaine, E.D., Demaine, M.L., Eppstein, D., Lubiw, A., Uehara, R.: Flat foldings of plane graphs with prescribed angles and edge lengths. J. Comput. Geom. 9(1), 71–91 (2018)

    MathSciNet  MATH  Google Scholar 

  2. Bandelt, H.-J., Chepoi, V., Eppstein, D.: Combinatorics and geometry of finite and infinite squaregraphs. SIAM J. Discrete Math. 24(4), 1399–1440 (2010). https://doi.org/10.1137/090760301

    Article  MathSciNet  MATH  Google Scholar 

  3. Bannister, M.J., Cabello, S., Eppstein, D.: Parameterized complexity of 1-planarity. J. Graph Algorithms Appl. 18(1), 23–49 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bannister, M.J., Eppstein, D.: Crossing minimization for 1-page and 2-page drawings of graphs with bounded treewidth. In: 22nd International Symposium on Graph Drawing (GD 2014), LNCS, vol. 8871, pp. 210–221. Springer (2014). https://doi.org/10.1007/978-3-662-45803-7_18

  5. Bannister, M.J., Eppstein, D., Simons, J.A.: Fixed parameter tractability of crossing minimization of almost-trees. In: 21st International Symposium on Graph Drawing (GD 2013), LNCS, vol. 8242, pp. 340–351. Springer (2013). https://doi.org/10.1007/978-3-319-03841-4_30

  6. Bastert, O., Matuszewski, C.: Layered drawings of digraphs. In: Drawing Graphs, Methods and Models, vol. 2025, pp. 87–120. LNCS (2001). https://doi.org/10.1007/3-540-44969-8_5

  7. Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Layered Drawings of Digraphs, Graph Drawing: Algorithms for the Visualization of Graphs, pp. 265–302. Prentice-Hall, Upper Saddle River (1999)

    MATH  Google Scholar 

  8. Di Giacomo, E., Meijer, H.: Track drawings of graphs with constant queue number. In: Proceedings of 11th International Symposium on Graph Drawing (GD ’03), LNCS, vol. 2912, pp. 214–225. Springer (2004). https://doi.org/10.1007/978-3-540-24595-7_20

  9. Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity, Texts in Computer Science. Springer, Berlin (2013). https://doi.org/10.1007/978-1-4471-5559-1

  10. Dujmović, V.: Graph layouts via layered separators. J. Combin. Theory Ser. B 110, 79–89 (2015). https://doi.org/10.1016/j.jctb.2014.07.005

    Article  MathSciNet  MATH  Google Scholar 

  11. Dujmović, V., Eppstein, D., Wood, D.R.: Genus, treewidth, and local crossing number. In: Proceedings of 23rd International Symposium on Graph Drawing and Network Visualization (GD ’15), Lecture Notes in Computer Science, vol. 9411, pp. 87–98. Springer (2015)

  12. Dujmović, V., Eppstein, D., Wood, D.R.: Structure of graphs with locally restricted crossings. SIAM J. Disc. Math. 31(2), 805–824 (2017). https://doi.org/10.1137/16M1062879

    Article  MathSciNet  MATH  Google Scholar 

  13. Dujmović, V., Fellows, M.R., Kitching, M., Liotta, G., McCartin, C., Nishimura, N., Ragde, P., Rosamond, F., Whitesides, S., Wood, D.R.: On the parameterized complexity of layered graph drawing. Algorithmica 52(2), 267–292 (2008). https://doi.org/10.1007/s00453-007-9151-1

    Article  MathSciNet  MATH  Google Scholar 

  14. Dujmović, V., Frati, F.: Stacks and queue layouts via layered separators. J. Graph Algorithms Appl. 22, 89–99 (2018). https://doi.org/10.7155/jgaa.00454

    Article  MathSciNet  MATH  Google Scholar 

  15. Dujmović, V., Joret, G., Morin, P., Norin, S., Wood, D.R.: Orthogonal tree decompositions of graphs. SIAM J. Discrete Math. 32(2), 839–863 (2018). arXiv: 1701.05639. https://doi.org/10.1137/17M1112637

  16. Dujmović, V., Morin, P., Wood, D.R.: Layout of graphs with bounded tree-width. SIAM J. Comput. 34(3), 553–579 (2005). https://doi.org/10.1137/S0097539702416141

    Article  MathSciNet  MATH  Google Scholar 

  17. Dujmović, V., Morin, P., Wood, D.R.: Layered separators for queue layouts, 3D graph drawing and nonrepetitive coloring. In: Proceedings of 54th Symposium on Foundations of Computer Science (FOCS 2013), pp. 280–289. IEEE Computer Society (2013). https://doi.org/10.1109/FOCS.2013.38

  18. Dujmović, V., Morin, P., Wood, D.R.: Layered separators in minor-closed graph classes with applications. J. Combin. Theory Ser. B 127, 111–147 (2017). https://doi.org/10.1016/j.jctb.2017.05.006

    Article  MathSciNet  MATH  Google Scholar 

  19. Dujmović, V., Pór, A., Wood, D.R.: Track layouts of graphs. Discrete Math. Theor. Comput. Sci. 6(2), 497–521 (2004). http://dmtcs.episciences.org/315

  20. Dujmović, V., Sidiropoulos, A., Wood, D.R.: Layouts of expander graphs. Chic. J. Theor. Comput. Sci. 2016(1) (2016). https://doi.org/10.4086/cjtcs.2016.001

  21. Dujmović, V., Wood, D.R.: Three-dimensional grid drawings with sub-quadratic volume. In: János, P. (ed.) Towards a Theory of Geometric Graphs, Contemporary Mathematics, vol. 342, pp. 55–66. American Mathematical Society, Providence (2004). https://doi.org/10.1090/conm/342/06130

  22. Dujmović, V., Wood, D.R.: Stacks, queues and tracks: layouts of graph subdivisions. Discrete Math. Theor. Comput. Sci. 7(1), 155–201 (2005). http://dmtcs.episciences.org/346

  23. Eades, P., Wormald, N.C.: Edge crossings in drawings of bipartite graphs. Algorithmica 11(4), 379–403 (1994). https://doi.org/10.1007/BF01187020

    Article  MathSciNet  MATH  Google Scholar 

  24. Felsner, S., Liotta, G., Wismath, S.K.: Straight-line drawings on restricted integer grids in two and three dimensions. J. Graph Algorithms Appl. 7(4), 363–398 (2003). https://doi.org/10.7155/jgaa.00075

    Article  MathSciNet  MATH  Google Scholar 

  25. Halin, R.: Studies on minimally \(n\)-connected graphs. In: Combinatorial Mathematics and Its Applications (Proc. Conf., Oxford, 1969), pp. 129–136. Academic Press (1971)

  26. Halin, R.: \(S\)-functions for graphs. J. Geom. 8(1–2), 171–186 (1976). https://doi.org/10.1007/BF01917434

    Article  MATH  Google Scholar 

  27. Harary, F., Schwenk, A.: A new crossing number for bipartite graphs. Util. Math. 1, 203–209 (1972)

    MathSciNet  MATH  Google Scholar 

  28. Harvey, D.J., Wood, D.R.: Parameters tied to treewidth. J. Graph Theory 84(4), 364–385 (2017). https://doi.org/10.1002/jgt.22030

    Article  MathSciNet  MATH  Google Scholar 

  29. Healy, P., Nikolov, N.S.: How to layer a directed acyclic graph. In: 9th International Symposium on Graph Drawing (GD 2001), LNCS, vol. 2265, pp. 16–30. Springer (2002). https://doi.org/10.1007/3-540-45848-4_2

  30. Healy, P., Nikolov, N.S.: Hierarchical Drawing Algorithms, Handbook on Graph Drawing and Visualization, pp. 409–453. CRC Press, Boca Raton (2013)

    Google Scholar 

  31. Heath, L.S., Rosenberg, A.L.: Laying out graphs using queues. SIAM J. Comput. 21(5), 927–958 (1992). https://doi.org/10.1137/0221055

    Article  MathSciNet  MATH  Google Scholar 

  32. Nešetřil, J., de Mendez, P.O.: Sparsity (Graphs, Structures, and Algorithms), Algorithms and Combinatorics, vol. 28. Springer, Berlin (2012). https://doi.org/10.1007/978-3-642-27875-4

  33. Robertson, N., Seymour, P.: Graph minors, I: excluding a forest. J. Combin. Theory Ser. B 35(1), 39–61 (1983). https://doi.org/10.1016/0095-8956(83)90079-5

    Article  MathSciNet  MATH  Google Scholar 

  34. Robertson, N., Seymour, P.D.: Graph minors. II. Algorithmic aspects of tree-width. J. Algorithms 7(3), 309–322 (1986). https://doi.org/10.1016/0196-6774(86)90023-4

    Article  MathSciNet  MATH  Google Scholar 

  35. Scheffler, P.: Optimal embedding of a tree into an interval graph in linear time. In: 4th Czechoslovakian Symposium on Combinatorics, Graphs and Complexity, Annals of Discrete Mathematics, vol. 51, pp. 287–291. North-Holland (1992). https://doi.org/10.1016/S0167-5060(08)70644-7

  36. Shahrokhi, F.: New representation results for planar graphs. In: 29th European Workshop on Computational Geometry (EuroCG 2013), pp. 177–180 (2013). arXiv: 1502.06175

  37. Sugiyama, K., Tagawa, S., Toda, M.: Methods for visual understanding of hierarchical system structures. IEEE Trans. Syst. Man Cybern. SMC–11(2), 109–125 (1981). https://doi.org/10.1109/TSMC.1981.4308636

    Article  MathSciNet  Google Scholar 

  38. Wikipedia: Winding Number (2016). https://en.wikipedia.org/wiki/Winding_number. Accessed 24 July 2018

  39. Wood, D.R.: Clique minors in Cartesian products of graphs. N. Y. J. Math. 17, 627–682 (2011). http://nyjm.albany.edu/j/2011/17-28.html

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David R. Wood.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A preliminary version of this paper entitled “Track Layout is Hard” was published in Proc. of 24th International Symp. on Graph Drawing and Network Visualization (GD ’16), Lecture Notes in Computer Science 9801:499–510, Springer, 2016.

Michael J. Bannister and David Eppstein were supported in part by NSF Grant CCF-1228639. William E. Devanny was supported by an NSF Graduate Research Fellowship under Grant DGE-1321846. Vida Dujmović was supported by NSERC and the Ministry of Research and Innovation, Government of Ontario, Canada. David R. Wood was supported by the Australian Research Council.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bannister, M.J., Devanny, W.E., Dujmović, V. et al. Track Layouts, Layered Path Decompositions, and Leveled Planarity. Algorithmica 81, 1561–1583 (2019). https://doi.org/10.1007/s00453-018-0487-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-018-0487-5

Keywords

Navigation