Advertisement

Algorithmica

pp 1–22 | Cite as

On the Classes of Interval Graphs of Limited Nesting and Count of Lengths

  • Pavel Klavík
  • Yota Otachi
  • Jiří Šejnoha
Article
  • 13 Downloads

Abstract

In 1969, Roberts introduced proper and unit interval graphs and proved that these classes are equal. Natural generalizations of unit interval graphs called k-length interval graphs were considered in which the number of different lengths of intervals is limited by k. Even after decades of research, no insight into their structure is known and the complexity of recognition is open even for \(k=2\). We propose generalizations of proper interval graphs called k-nested interval graphs in which there are no chains of \(k+1\) intervals nested in each other. It is easy to see that k-nested interval graphs are a superclass of k-length interval graphs. We give a linear-time recognition algorithm for k-nested interval graphs. This algorithm adds a missing piece to Gajarský et al. [FOCS 2015] to show that testing FO properties on interval graphs is FPT with respect to the nesting k and the length of the formula, while the problem is W[2]-hard when parameterized just by the length of the formula. We show that a generalization of recognition called partial representation extension is NP-hard for k-length interval graphs, even when \(k=2\), while Klavík et al. show that it is polynomial-time solvable for k-nested interval graphs.

Keywords

Interval graphs Proper and unit interval graphs Recognition Partial representation extension 

Notes

Acknowledgements

We want to thank Takehiro Ito and Hirotaka Ono for fruitful discussions, and to an anonymous reviewer for pointing out that nesting in also studied in [4].

References

  1. 1.
    Bläsius, T., Rutter, I.: Simultaneous PQ-ordering with applications to constrained embedding problems. ACM Trans. Algorithms 12(2), 16 (2016)MathSciNetGoogle Scholar
  2. 2.
    Bonomo, F., de Estrada, D.: On the thinness and proper thinness of a graph (2017). CoRR arXiv:1704.00379
  3. 3.
    Booth, K.S., Lueker, G.S.: Testing for the consecutive ones property, interval graphs, and planarity using PQ-tree algorithms. J. Comput. Syst. Sci. 13, 335–379 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Cerioli, M.R., Oliveira, F.de S., Szwarcfiter, J.L.: On counting interval lengths of interval graphs. Discret. Appl. Math. 159(7), 532–543 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Chaplick, S., Dorbec, P., Kratochvíl, J., Montassier, M., Stacho, J.: Contact representations of planar graphs: Extending a partial representation is hard. In: WG’14. Volume of 8747 LNCS, pp. 139–151 (2014)Google Scholar
  6. 6.
    Chaplick, S.,Fulek, R., Klavík, P.: Extending partial representations of circle graphs. In: Graph Drawing. Volume of 8242 LNCS, pp. 131–142. Springer, Berlin (2013)Google Scholar
  7. 7.
    Corneil, D.G., Kim, H., Natarajan, S., Olariu, S., Sprague, A.P.: Simple linear time recognition of unit interval graphs. Inf. Process. Lett. 55(2), 99–104 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Fishburn, P.C.: Paradoxes of two-length interval orders. Discret. Math. 52(2), 165–175 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Fishburn, P.C.: Interval graphs and interval orders. Discret. Math. 55(2), 135–149 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Fishburn, P.C.: Interval Orders and Interval Graphs: a Study of Partially Ordered Sets. Wiley, New York (1985)zbMATHGoogle Scholar
  11. 11.
    Fulkerson, D.R., Gross, O.A.: Incidence matrices and interval graphs. Pac. J. Math. 15, 835–855 (1965)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Gajarský, J., Lokshtanov, D., Obdržálek, J., Ordyniak, S., Ramanujan, M.S., Saurabh, S.: FO model checking on posets of bounded width. In: FOCS 2015, pp. 963–974Google Scholar
  13. 13.
    Ganian, R., Hlinený, P., Král, D., Obdržálek, J., Schwartz, J., Teska, J.: Fo model checking of interval graphs. Log. Methods Comput. Sci. 11(4:11), 1–20 (2015)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Garey, M.R., Johnson, D.S.: Complexity results for multiprocessor scheduling under resource constraints. SIAM J. Comput. 4(4), 397–411 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Hell, P.,  Kirkpatrick, D.,  Klavík, P.,  Otachi, Y.: Minimal forbidden induced subgraphs for \(k\)-nested interval graphs (2018) (In preparation)Google Scholar
  16. 16.
    Joos, F., Löwenstein, C., F. de S. Oliveira, F.de S., Rautenbach, D., Szwarcfiter, J.L.: Graphs of interval count two with a given partition. Inf. Process. Lett. 114(10), 542–546 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Klavík, P.,  Kratochvíl, J.,  Krawczyk, T.,  Walczak, B.: Extending partial representations of function graphs and permutation graphs. In: ESA. Volume 7501 of LNCS, pp. 671–682. Springer, Berlin (2012)Google Scholar
  18. 18.
    Klavík, P., Kratochvíl, J., Otachi, Y., Rutter, I., Saitoh, T., Saumell, M., Vyskočil, T.: Extending partial representations of proper and unit interval graphs. Algorithmica 77(4), 1071–1104 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Klavík, P., Kratochvíl, J., Otachi, Y., Saitoh, T.: Extending partial representations of subclasses of chordal graphs. Theor. Comput. Sci. 576, 85–101 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Klavík, P., Kratochvíl, J., Otachi, Y., Saitoh, T., Vyskočil, T.: Extending partial representations of interval graphs. Algorithmica 78(3), 945–967 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Klavík, P., Kratochvíl, J.,  Vyskočil, T.: Extending partial representations of interval graphs. In: TAMC. Volume 6648 of LNCS, pp. 276–285. Springer, Berlin (2011)Google Scholar
  22. 22.
    Klavík, P.,  Otachi, Y.,  Šejnoha, J.: On the classes of interval graphs of limited nesting and count of lengths. In: 27th International Symposium on Algorithms and Computation, ISAAC 2016. Volume 64 of Leibniz International Proceedings in Informatics (LIPIcs), pp. 45:1–45:13 (2016)Google Scholar
  23. 23.
    Klavík, P.,  Otachi, Y.,  Šejnoha, J.: Extending partial representations of interval graphs of limited nesting (2017) (In preparation)Google Scholar
  24. 24.
    Klavík, P., Saumell, M.: Minimal obstructions for partial representation extension of interval graphs. In: ISAAC. Volume 8889 of LNCS, pp. 401–413 (2014)Google Scholar
  25. 25.
    Korte, N., Möhring, R.: An incremental linear-time algorithm for recognizing interval graphs. SIAM J. Comput. 18(1), 68–81 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Krawczyk, T.,  Walczak, B.: Extending partial representations of trapezoid graphs. In: International Workshop on Graph-Theoretic Concepts in Computer Science, pp. 358–371. Springer, Berlin (2017)Google Scholar
  27. 27.
    Leibowitz, R., Assmann, S.F., Peck, G.W.: The interval count of a graph. SIAM J. Algebr. Discret. Methods 3, 485–494 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Lekkerkerker, C., Boland, D.: Representation of finite graphs by a set of intervals on the real line. Fundam. Math. 51, 45–64 (1962)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Proskurowski, A., Telle, J.A.: Classes of graphs with restricted interval models. Discret. Math. Theor. Comput. Sci. 3(4), 167–176 (1999)MathSciNetzbMATHGoogle Scholar
  30. 30.
    Roberts, F.S.: Indifference graphs. In: Harary, F. (ed.) Proof Techniques in Graph Theory, pp. 139–146. Academic Press, New York (1969)Google Scholar
  31. 31.
    Rose, D.J., Tarjan, R.E., Lueker, G.S.: Algorithmic aspects of vertex elimination on graphs. SICOMP 5(2), 266–283 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Skrien, D.: Chronological orderings of interval graphs. Discret. Appl. Math. 8(1), 69–83 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Soulignac, F.J.: Bounded, minimal, and short representations of unit interval and unit circular-arc graphs. Chapter I: theory. J. Graph Algorithm. Appl. 21(4), 455–489 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Soulignac, F.J.: Bounded, minimal, and short representations of unit interval and unit circular-arc graphs. Chapter II: theory. J. Graph Algorithm. Appl. 21(4), 491–525 (2017).  https://doi.org/10.7155/jgaa.00426 MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Zeman, P.: Extending partial representations of unit circular-arc graphs (2017). CoRR arXiv:1706.00928

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Computer Science Institute, Faculty of Mathematics and PhysicsCharles UniversityPragueCzech Republic
  2. 2.Faculty of Advanced Science and TechnologyKumamoto UniversityKumamotoJapan
  3. 3.Department of Applied Mathematics, Faculty of Mathematics and PhysicsCharles UniversityPragueCzech Republic

Personalised recommendations