, Volume 80, Issue 12, pp 3959–3981 | Cite as

The Fast Search Number of a Complete k-Partite Graph

  • Yuan Xue
  • Boting YangEmail author
  • Farong Zhong
  • Sandra Zilles


Research on graph searching has recently gained interest in computer science, mathematics, and physics. This paper studies fast searching of a fugitive in a graph, a model that was introduced by Dyer et al. (in: Fleischer, Xu (eds.) Algorithmic aspects in information and management, Springer, New York, 2008). We provide lower bounds and upper bounds on the fast search number (i.e., the minimum number of searchers required for capturing the fugitive) of complete k-partite graphs. We also investigate some special classes of complete k-partite graphs, such as complete bipartite graphs and complete split graphs. We solve the open problem of determining the fast search number of complete bipartite graphs, and present upper and lower bounds on the fast search number of complete split graphs.


Fast searching Complete k-partite graph Bipartite graph Split graph 



The authors would like to thank the anonymous referees for their valuable comments and suggestions, which improved the presentation of this paper.


  1. 1.
    Alspach, B.: Sweeping and searching in graphs: a brief survey. Matematiche 59, 5–37 (2006)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Alspach, B., Dyer, D., Hanson, D., Yang, B.: Lower bounds on edge searching. In: Chen, B., Paterson, M., Zhang, G. (eds.) Combinatorics, Algorithms, Probabilistic and Experimental Methodologies, pp. 516–527. Springer, New York (2007)CrossRefGoogle Scholar
  3. 3.
    Bienstock, D.: Graph searching, path-width, tree-width and related problems (a survey). DIMACS Ser. Discr. Math. Theor. Comput. Sci. 5, 33–49 (1991)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Bonato, A., Nowakowski, R.J.: The Game of Cops and Robbers on Graphs. American Mathematical Society, Providence (2011)CrossRefGoogle Scholar
  5. 5.
    Dereniowski, D., Diner, Ö., Dyer, D.: Three-fast-searchable graphs. Discr. Appl. Math. 161(13), 1950–1958 (2013)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Dyer, D., Yang, B., Yaşar, Ö.: On the fast searching problem. In: Fleischer, R., Xu, J. (eds.) Algorithmic Aspects in Information and Management, pp. 143–154. Springer, New York (2008)CrossRefGoogle Scholar
  7. 7.
    Fomin, F.V., Thilikos, D.M.: An annotated bibliography on guaranteed graph searching. Theor. Comput. Sci. 399(3), 236–245 (2008)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Hahn, G.: Cops, robbers and graphs. Tatra Mt. Math. Publ 36(163), 163–176 (2007)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Makedon, F.S., Papadimitriou, C.H., Sudborough, I.H.: Topological bandwidth. SIAM J. Algebr. Discr. Methods 6(3), 418–444 (1985)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Nimrod Megiddo, S., Hakimi, S.L., Garey, M.R., Johnson, D.S., Papadimitriou, C.H.: The complexity of searching a graph. J. ACM 35(1), 18–44 (1988)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Stanley, D., Yang, B.: Fast searching games on graphs. J. Comb. Optim. 22(4), 763–777 (2011)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Xue, Y., Yang, B.: The fast search number of a cartesian product of graphs. Discr. Appl. Math. 224, 106–119 (2017)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Xue, Y., Yang, B., Zhong, F., Zilles, S.: Fast searching on complete k-partite graphs. In: International Conference on Combinatorial Optimization and Applications, pp. 159–174. Springer (2016)Google Scholar
  14. 14.
    Yang, B.: Fast edge searching and fast searching on graphs. Theor. Comput. Sci. 412(12), 1208–1219 (2011)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Yuan Xue
    • 1
  • Boting Yang
    • 1
    Email author
  • Farong Zhong
    • 2
  • Sandra Zilles
    • 1
  1. 1.Department of Computer ScienceUniversity of ReginaReginaCanada
  2. 2.College of Math, Physics and Information TechnologyZhejiang Normal UniversityJinhuaChina

Personalised recommendations