Guarding Orthogonal Art Galleries with Sliding k-Transmitters: Hardness and Approximation
- 30 Downloads
Abstract
A sliding k-transmitter inside an orthogonal polygon P, for a fixed \(k\ge 0\), is a point guard that travels along an axis-parallel line segment s in P. The sliding k-transmitter can see a point \(p\in P\) if the perpendicular from p onto s intersects the boundary of P in at most k points. In the Minimum Sliding k-Transmitters (\({\hbox {ST}}_k\)) problem, the objective is to guard P with the minimum number of sliding k-transmitters. In this paper, we give a constant-factor approximation algorithm for the \({\hbox {ST}}_k\) problem on P for any fixed \(k\ge 0\). Moreover, we show that the \({\hbox {ST}}_0\) problem is NP-hard on orthogonal polygons with holes even if only horizontal sliding 0-transmitters are allowed. For \(k>0\), the problem is NP-hard even in the extremely restricted case where P is simple and monotone. Finally, we study art gallery theorems; i.e., we give upper and lower bounds on the number of sliding transmitters required to guard P relative to the number of vertices of P.
Keywords
Art gallery problem Sliding k-transmitters \(\epsilon \)-netsReferences
- 1.Aggarwal, A.: The art gallery theorem: its variations, applications and algorithmic aspects. PhD thesis, Johns Hopkins University, (1984)Google Scholar
- 2.Aichholzer, O., Monroy, R.F., Flores-Peñaloza, D., Hackl, T., Urrutia, J., Vogtenhuber, B.: Modem illumination of monotone polygons. Comput. Geom. 68, 101–118 (2018)MathSciNetCrossRefMATHGoogle Scholar
- 3.Avis, D., Toussaint, G.T.: An optimal algorithm for determining the visibility of a polygon from an edge. IEEE Trans. Comput. 30(12), 910–914 (1981)MathSciNetCrossRefGoogle Scholar
- 4.Ballinger, B., Benbernou, N., Bose, P., Damian, M., Demaine, E.D., Dujmovic, V., Flatland, R.Y., Hurtado, F., Iacono, J., Lubiw, A., Morin, P., Adinolfi, V.S., Souvaine, D.L., Uehara, R.: Coverage with k-transmitters in the presence of obstacles. J. Comb. Optim. 25(2), 208–233 (2013)MathSciNetCrossRefMATHGoogle Scholar
- 5.Biedl, T., Chan, T.M., Lee, S., Mehrabi, S., Montecchiani, F., Vosoughpour, H.: On guarding orthogonal polygons with sliding cameras. In: Poon, S.-H., et al. (eds.) Proceedings of the 11th International Workshop on Algorithms and Computation (WALCOM 2017), volume 10167 of Lecture Notes in Computer Science, pp. 1–12. Springer, (2017)Google Scholar
- 6.Biedl, T., Kant, G., Kaufmann, M.: On triangulating planar graphs under the four-connectivity constraint. Algorithmica 19(4), 427–446 (1997)MathSciNetCrossRefMATHGoogle Scholar
- 7.Biedl, T., Mehrabi, S.: On r-guarding thin orthogonal polygons. In: 27th International Symposium on Algorithms and Computation (ISAAC 2016) vol. 64 of LIPIcs, pp. 17:1–17:13 (2016)Google Scholar
- 8.Biedl, T., Mehrabi, S., Yu, Z.: Sliding \(k\)-transmitters: Hardness and approximation. In: Proceedings of the 28th Canadian Conference on Computational Geometry (CCCG 2016), Vancouver, Canada (2016)Google Scholar
- 9.Brönnimann, H., Goodrich, M.T.: Almost optimal set covers in finite VC-dimension. Discret. Comput. Geom. 14(4), 463–479 (1995)MathSciNetCrossRefMATHGoogle Scholar
- 10.Cannon, S., Fai, T.G., Iwerks, J., Leopold, U., Schmidt, C.: Combinatorics and complexity of guarding polygons with edge and point 2-transmitters. Comput. Geom. 68, 89–100 (2018)MathSciNetCrossRefMATHGoogle Scholar
- 11.Chvátal, V.: A combinatorial theorem in plane geometry. J. Comb. Theory Ser. B 18, 39–41 (1975)MathSciNetCrossRefMATHGoogle Scholar
- 12.Clarkson, K.L., Varadarajan, K.R.: Improved approximation algorithms for geometric set cover. Discret. Comput. Geom. 37(1), 43–58 (2007)MathSciNetCrossRefMATHGoogle Scholar
- 13.de Berg, M., Durocher, S., Mehrabi, S.: Guarding monotone art galleries with sliding cameras in linear time. J. Discret. Algorithms 44, 39–47 (2017)MathSciNetCrossRefMATHGoogle Scholar
- 14.Durocher, S., Filtser, O., Fraser, R., Mehrabi, A.D., Mehrabi, S.: A (7/2)-approximation algorithm for guarding orthogonal art galleries with sliding cameras. In: Proceedings of Latin-American Symposium (LATIN 2014), vol. 8392 of LNCS, pp. 294–305 (2014)Google Scholar
- 15.Durocher, S., Filtser, O., Fraser, R., Mehrabi, A.D., Mehrabi, S.: Guarding orthogonal art galleries with sliding cameras. Comput. Geom. 65, 12–26 (2017)MathSciNetCrossRefMATHGoogle Scholar
- 16.Durocher, S., Mehrabi, S.: Guarding orthogonal art galleries using sliding cameras: algorithmic and hardness results. In: Proceedings of Mathematical Foundations of Computer Science (MFCS 2013), vol. 8087 of LNCS, pp. 314–324 (2013)Google Scholar
- 17.Eidenbenz, S., Stamm, C., Widmayer, P.: Inapproximability results for guarding polygons and terrains. Algorithmica 31(1), 79–113 (2001)MathSciNetCrossRefMATHGoogle Scholar
- 18.Garey, M.R., Johnson, D.S.: The rectilinear Steiner tree problem in NP-complete. SIAM J. Appl. Math. 32, 826–834 (1977)MathSciNetCrossRefMATHGoogle Scholar
- 19.Hoffmann, F., Kaufmann, M., Kriegel, K.: The art gallery theorem for polygons with holes. In: Proceedings of Foundations of Computer Science (FOCS 1991), pp. 39–48 (1991)Google Scholar
- 20.Kahn, J., Klawe, M.M., Kleitman, D.J.: Traditional galleries require fewer watchmen. SIAM J. Algebr. Discret. Methods 4(2), 194–206 (1983)MathSciNetCrossRefMATHGoogle Scholar
- 21.Katz, M.J., Mitchell, J.S.B., Nir, Y.: Orthogonal segment stabbing. Comput. Geom. 30(2), 197–205 (2005)MathSciNetCrossRefMATHGoogle Scholar
- 22.Katz, M.J., Morgenstern, G.: Guarding orthogonal art galleries with sliding cameras. Int. J. Comp. Geom. Appl. 21(2), 241–250 (2011)MathSciNetCrossRefMATHGoogle Scholar
- 23.Kirkpatrick, D.G.: An \({O}(\lg \lg {OPT})\)-approximation algorithm for multi-guarding galleries. Discret. Comput. Geom. 53(2), 327–343 (2015)CrossRefMATHGoogle Scholar
- 24.Krohn, E., Nilsson, B.J.: Approximate guarding of monotone and rectilinear polygons. Algorithmica 66(3), 564–594 (2013)MathSciNetCrossRefMATHGoogle Scholar
- 25.Lee, D.T., Lin, A.K.: Computational complexity of art gallery problems. IEEE Trans. Inf. Theory 32(2), 276–282 (1986)MathSciNetCrossRefMATHGoogle Scholar
- 26.Lubiw, A.: Decomposing polygonal regions into convex quadrilaterals. In: Proceedings of the ACM Symposium on Computational Geometry (SoCG 1985), pp. 97–106 (1985)Google Scholar
- 27.Mehrabi, S.: Geometric optimization problems on orthogonal polygons: hardness results and approximation algorithms. PhD thesis, University of Manitoba, Winnipeg, Canada (2015)Google Scholar
- 28.O’Rourke, J.: The complexity of computing minimum convex covers for polygons. In: 20th Allerton Conference on Communication Control Computing, pp. 75–84 (1982)Google Scholar
- 29.O’Rourke, J.: An alternate proof of the rectilinear art gallery theorem. J. Geom. 21, 118–130 (1983)MathSciNetCrossRefMATHGoogle Scholar
- 30.O’Rourke, J.: Galleries need fewer mobile guards: a variation to Chvátal’s theorem. Geometriae Dedicata 14, 273–283 (1983)MathSciNetMATHGoogle Scholar
- 31.O’Rourke, J.: Art Gallery Theorems and Algorithms. The International Series of Monographs on Computer Science. Oxford University Press, New York (1987)Google Scholar
- 32.Schuchardt, D., Hecker, H.: Two NP-hard art-gallery problems for ortho-polygons. Math. Logic Q. 41(2), 261–267 (1995)MathSciNetCrossRefMATHGoogle Scholar
- 33.Tamassia, R., Tollis, I.G.: A unified approach to visibility representation of planar graphs. Discret. Comput. Geom. 1, 321–341 (1986)MathSciNetCrossRefMATHGoogle Scholar
- 34.Tomás, A.P.: Guarding thin orthogonal polygons is hard. In: Proceedings of Fundamentals of Computation Theory (FCT 2013), vol. 8070 of LNCS, pp. 305–316 (2013)Google Scholar
- 35.Urrutia, J.: Art gallery and illumination problems. In: Handbook of Computational Geometry, pp. 973–1027. North-Holland, (2000)Google Scholar