Skip to main content

Optimal Composition Ordering Problems for Piecewise Linear Functions

Abstract

In this paper, we introduce maximum composition ordering problems. The input is n real functions \(f_1,\dots ,f_n:\mathbb {R}\rightarrow \mathbb {R}\) and a constant \(c\in \mathbb {R}\). We consider two settings: total and partial compositions. The maximum total composition ordering problem is to compute a permutation \(\sigma :[n]\rightarrow [n]\) which maximizes \(f_{\sigma (n)}\circ f_{\sigma (n-1)}\circ \dots \circ f_{\sigma (1)}(c)\), where \([n]=\{1,\dots ,n\}\). The maximum partial composition ordering problem is to compute a permutation \(\sigma :[n]\rightarrow [n]\) and a nonnegative integer \(k~(0\le k\le n)\) which maximize \(f_{\sigma (k)}\circ f_{\sigma (k-1)}\circ \dots \circ f_{\sigma (1)}(c)\). We propose \(\mathrm {O}(n\log n)\) time algorithms for the maximum total and partial composition ordering problems for monotone linear functions \(f_i\), which generalize linear deterioration and shortening models for the time-dependent scheduling problem. We also show that the maximum total composition ordering problem can be solved in polynomial time if \(f_i\) is of the form \(\max \{a_ix+b_i,d_i,x\}\) for some constants \(a_i\,(\ge 0)\), \(b_i\) and \(d_i\). As a corollary, we show that the two-valued free-order secretary problem can be solved in polynomial time. We finally prove that there exists no constant-factor approximation algorithm for the problems, even if \(f_i\)’s are monotone, piecewise linear functions with at most two pieces, unless P \(=\) NP.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. 1.

    Babaioff, M., Immorlica, N., Kempe, D., Kleinberg, R.: A knapsack secretary problem with applications. In: Proceedings of APPROX/RANDOM 2007, pp. 6–28 (2007)

  2. 2.

    Babaioff, M., Immorlica, N., Kleinberg, R.: Matroids, secretary problems, and online mechanisms. in: Proceedings of SODA 2007, pp. 434–443 (2007)

  3. 3.

    Cai, J.Y., Cai, P., Zhu, Y.: On a scheduling problem of time deteriorating jobs. J. Complex. 14(2), 190–209 (1998)

    MathSciNet  Article  MATH  Google Scholar 

  4. 4.

    Cheng, T.C.E., Ding, Q.: The complexity of scheduling starting time dependent tasks with release times. Inf. Process. Lett. 65(2), 75–79 (1998)

    MathSciNet  Article  MATH  Google Scholar 

  5. 5.

    Cheng, T.C.E., Ding, Q., Kovalyov, M.Y., Bachman, A., Janiak, A.: Scheduling jobs with piecewise linear decreasing processing times. Naval Res. Logist. 50(6), 531–554 (2003)

    MathSciNet  Article  MATH  Google Scholar 

  6. 6.

    Cheng, T.C.E., Ding, Q., Lin, B.M.T.: A concise survey of scheduling with time-dependent processing times. EJOR 152(1), 1–13 (2004)

    MathSciNet  Article  MATH  Google Scholar 

  7. 7.

    Dean, B., Goemans, M., Vondrák, J.: Adaptivity and approximation for stochastic packing problems. In: Proceedings of SODA 2005, pp. 395–404 (2005)

  8. 8.

    Dean, B., Goemans, M., Vondrák, J.: Approximating the stochastic knapsack problem: the benefit of adaptivity. Math. Oper. Res. 33(4), 945–964 (2008)

    MathSciNet  Article  MATH  Google Scholar 

  9. 9.

    Ferguson, T.S.: Who solved the secretary problem? Stat. Sci. 4(3), 282–289 (1989)

    MathSciNet  Article  MATH  Google Scholar 

  10. 10.

    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman, New York (1979)

    MATH  Google Scholar 

  11. 11.

    Gawiejnowicz, S.: Scheduling deteriorating jobs subject to job or machine availability constraints. EJOR 180(1), 472–478 (2007)

    Article  MATH  Google Scholar 

  12. 12.

    Gawiejnowicz, S.: Time-Dependent Scheduling. Springer, Berlin (2008)

    MATH  Google Scholar 

  13. 13.

    Gawiejnowicz, S., Pankowska, L.: Scheduling jobs with varying processing times. Inf. Process. Lett. 54(3), 175–178 (1995)

    Article  MATH  Google Scholar 

  14. 14.

    Gupta, J.N., Gupta, S.K.: Single facility scheduling with nonlinear processing times. Comput. Ind. Eng. 14(4), 387–393 (1988)

    Article  Google Scholar 

  15. 15.

    Ho, K.I.J., Leung, J.Y.T., Wei, W.D.: Complexity of scheduling tasks with time-dependent execution times. Inf. Process. Lett. 48(6), 315–320 (1993)

    MathSciNet  Article  MATH  Google Scholar 

  16. 16.

    Kawase, Y., Makino, K., Seimi, K.: Optimal composition ordering problems for piecewise linear functions. In: Proceedings of ISAAC 2016, pp. 42:1–42:13 (2016)

  17. 17.

    Melnikov, O.I., Shafransky, Y.M.: Parametric problem of scheduling theory. Cybernetics 15, 352–357 (1980)

    Article  Google Scholar 

  18. 18.

    Ng, C.T., Barketau, M., Cheng, T.C.E., Kovalyov, M.Y.: “Product partition” and related problems of scheduling and systems reliability: computational complexity and approximation. EJOR 207, 601–604 (2010)

    MathSciNet  Article  MATH  Google Scholar 

  19. 19.

    Oveis Gharan, S., Vondrák, J.: On variants of the matroid secretary problem. In: Proceedings of ESA 2011, pp. 335–346 (2011)

  20. 20.

    Tanaev, V.S., Gordon, V.S., Shafransky, Y.M.: Scheduling Theory: Single-Stage Systems. Kluwer Academic Publishers, Dordrecht (1994)

    Book  MATH  Google Scholar 

  21. 21.

    Wajs, W.: Polynomial algorithm for dynamic sequencing problem. Archiwum Automatyki i Telemechaniki 31(3), 209–213 (1986)

    MATH  Google Scholar 

Download references

Acknowledgements

The first author is supported by JSPS KAKENHI Grant Numbers 26887014 and JP16K16005. The second author is supported by supported by JSPS KAKENHI Grant Numbers JP24106002, JP25280004, JP26280001, and JST CREST Grant Number JPMJCR1402, Japan.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yasushi Kawase.

Additional information

An extended abstract of this paper appears in ISAAC 2016 [16].

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kawase, Y., Makino, K. & Seimi, K. Optimal Composition Ordering Problems for Piecewise Linear Functions. Algorithmica 80, 2134–2159 (2018). https://doi.org/10.1007/s00453-017-0397-y

Download citation

Keywords

  • Function composition
  • Time-dependent scheduling
  • Ordering problem