, Volume 80, Issue 5, pp 1493–1533 | Cite as

An Algorithmic Framework for Labeling Network Maps

  • Benjamin Niedermann
  • Jan-Henrik Haunert
Part of the following topical collections:
  1. Special Issue on Computing and Combinatorics


Drawing network maps automatically comprises two challenging steps, namely laying out the map and placing non-overlapping labels. In this paper we tackle the problem of labeling an already existing network map considering the application of metro maps. We present a flexible and versatile labeling model that subsumes different labeling styles. We show that labeling a single line of the network is NP-hard, even if we make very restricting requirements about the labeling style that is used with this model. For a restricted variant of that model, we then introduce an efficient algorithm that optimally labels a single line with respect to a given cost function. Based on that algorithm, we present a general and sophisticated workflow for multiple metro lines, which is experimentally evaluated on real-world metro maps.


Labeling Metro maps Computational cartography Dynamic programming Integer linear programming Experimental evaluation 



We sincerely thank Herman Haverkort, Arlind Nocaj, Aidan Slingsby and Jo Wood for helpful and interesting discussions.


  1. 1.
    Agarwal, P.K., van Kreveld, M., Suri, S.: Label placement by maximum independent set in rectangles. Comput. Geom. Theory Appl. 11(3–4), 209–218 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Aspvall, B., Plass, M.F., Tarjan, R.E.: A linear-time algorithm for testing the truth of certain quantified Boolean formulas. Inf. Process. Lett. 8(3), 121–123 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Christensen, J., Marks, J., Shieber, S.: An empirical study of algorithms for point-feature label placement. Am. Cartogr. 14(3), 203–232 (1995)Google Scholar
  4. 4.
    Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 3rd edn. MIT Press, Cambridge (2009)zbMATHGoogle Scholar
  5. 5.
    Fink, M., Haverkort, H., Nöllenburg, M., Roberts, M., Schuhmann, J., Wolff, A.: Drawing metro maps using bézier curves. In: Graph Drawing (GD’13), Volume 7704 of Lecture Notes in Computer Science, pp. 463–474. Springer (2013)Google Scholar
  6. 6.
    Formann, M., Wagner, F.: A packing problem with applications to lettering of maps. In: Computational Geometry (SoCG’91), pp. 281–288. ACM Press (1991)Google Scholar
  7. 7.
    Fowler, R.J., Paterson, M.S., Tanimoto, S.L.: Optimal packing and covering in the plane are NP-complete. Inf. Process. Lett. 12(3), 133–137 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Garrido, M., Iturriaga, C., Márquez, A., Portillo, J., Reyes, P., Wolff, A.: Labeling subway lines. In: Algorithms and Computation (ISAAC’01), Volume 2223 of Lecture Notes in Computer Science, pp. 649–659. Springer, Berlin (2001)Google Scholar
  9. 9.
    Imhof, E.: Positioning names on maps. Am. Cartogr. 2(2), 128–144 (1975)CrossRefGoogle Scholar
  10. 10.
    Kakoulis, K.G., Tollis, I.G.: A unified approach to labeling graphical features. In: Computational Geometry (SoCG’98), pp. 347–356. ACM Press (1998)Google Scholar
  11. 11.
    Lichtenstein, D.: Planar formulae and their uses. SIAM J. Comput. 11(2), 329–343 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Nöllenburg, M.: An improved algorithm for the metro-line crossing minimization problem. In: Graph Drawing (GD’09), Volume 5849 of Lecture Notes in Computer Science, pp. 381–392. Springer, Berlin (2010)Google Scholar
  13. 13.
    Nöllenburg, M., Wolff, A.: Drawing and labeling high-quality metro maps by mixed-integer programming. IEEE Trans. Vis. Comput. Gr. 17(5), 626–641 (2011)CrossRefGoogle Scholar
  14. 14.
    Poon, C.K., Zhu, B., Chin, F.: A polynomial time solution for labeling a rectilinear map. In: Computational Geometry (SoCG’97), pp. 451–453. ACM (1997)Google Scholar
  15. 15.
    Pupyrev, S., Nachmanson, L., Bereg, S., Holroyd, A.E.: Edge routing with ordered bundles. Comput. Geom. Theory Appl. 52, 18–33 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Stott, J., Rodgers, P., Martinez-Ovando, J.C., Walker, S.G.: Automatic metro map layout using multicriteria optimization. IEEE Trans. Vis. Comput. Gr. 17(1), 101–114 (2011)CrossRefGoogle Scholar
  17. 17.
    van Goethem, A., Meulemans, W., Reimer, A., Haverkort, H., Speckmann, B.: Topologically safe curved schematisation. Cartogr. J. 50(3), 276–285 (2013)CrossRefGoogle Scholar
  18. 18.
    Wang, Y.-S., Chi, M.-T.: Focus+context metro maps. IEEE Trans. Vis. Comput. Gr. 17(12), 2528–2535 (2011)CrossRefGoogle Scholar
  19. 19.
    Wolff, A. Graph drawing and cartography. In: Handbook of Graph Drawing and Visualization, chapter 23, pp. 697–736. Chapman and Hall (2013)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2018

Authors and Affiliations

  1. 1.University of BonnBonnGermany

Personalised recommendations