, Volume 80, Issue 5, pp 1459–1492 | Cite as

Evaluation of Circuits Over Nilpotent and Polycyclic Groups

  • Daniel König
  • Markus Lohrey
Part of the following topical collections:
  1. Special Issue on Computing and Combinatorics


We study the circuit evaluation problem (also known as the compressed word problem) for finitely generated linear groups. The best upper bound for this problem is coRP (the complements of problems in randomized polynomial time), which is shown by a reduction to polynomial identity testing for arithmetic circuits. Conversely, the compressed word problem for the linear group \({\mathsf {SL}}_3({\mathbb {Z}})\) is equivalent to polynomial identity testing. In the paper, we show that the compressed word problem for every finitely generated nilpotent group is in \({\mathsf {DET}} \subseteq {\mathsf {NC}}^2\). Within the larger class of polycyclic groups we find examples where the compressed word problem is at least as hard as polynomial identity testing for skew arithmetic circuits. It is a major open problem, whether polynomial identity testing for skew arithmetic circuits can be solved in polynomial time.


  1. 1.
    Agrawal, M., Biswas, S.: Primality and identity testing via chinese remaindering. J. Assoc. Comput. Mach. 50(4), 429–443 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Allender, E., Beals, R., Ogihara, M.: The complexity of matrix rank and feasible systems of linear equations. Comput. Complex. 8(2), 99–126 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Allender, E., Bürgisser, P., Kjeldgaard-Pedersen, J., Miltersen, P.B.: On the complexity of numerical analysis. SIAM J. Comput. 38(5), 1987–2006 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Allender, E., Jiao, J., Mahajan, M., Vinay, V.: Non-commutative arithmetic circuits: depth reduction and size lower bounds. Theor. Comput. Sci. 209(1–2), 47–86 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Àlvarez, C., Jenner, B.: A very hard log-space counting class. Theor. Comput. Sci. 107(1), 3–30 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Arora, S., Barak, B.: Computational Complexity—A Modern Approach. Cambridge University Press, Cambridge (2009)CrossRefzbMATHGoogle Scholar
  7. 7.
    Arvind, V., Joglekar, P.S.: Arithmetic circuit size, identity testing, and finite automata. Electron. Colloq. Comput. Complex. (ECCC) 16, 26 (2009)Google Scholar
  8. 8.
    Auslander, L.: On a problem of Philip Hall. Ann. Math. 86(2), 112–116 (1967)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Barrington, D.A.M.: Bounded-width polynomial-size branching programs recognize exactly those languages in \(\text{ NC }^1\). J. Comput. Syst. Sci. 38, 150–164 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Barrington, D.A.M., Thérien, D.: Finite monoids and the fine structure of \(\text{ NC }^{1}\). J. Assoc. Comput. Mach. 35(4), 941–952 (1988)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Beaudry, M., McKenzie, P., Péladeau, P., Thérien, D.: Finite monoids: from word to circuit evaluation. SIAM J. Comput. 26(1), 138–152 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Ben-Or, M., Cleve, R.: Computing algebraic formulas using a constant number of registers. SIAM J. Comput. 21(1), 54–58 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Biss, D.K., Dasgupta, S.: A presentation for the unipotent group over rings with identity. J. Algebra 237(2), 691–707 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Cook, S.A.: A taxonomy of problems with fast parallel algorithms. Inf. Control 64, 2–22 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Cook, S.A., Fontes, L.: Formal theories for linear algebra. Log. Methods Comput. Sci. 8(1), (2012). doi: 10.2168/LMCS-8(1:25)2012
  16. 16.
    Diekert, V., Myasnikov, A.G., Weiß, A.: Conjugacy in Baumslag’s group, generic case complexity, and division in power circuits. In: Proceedings of the 11th Symposium on Latin American Theoretical Informatics, LATIN 2014. Volume 8392 of Lecture Notes in Computer Science, pp. 1–12. Springer (2014)Google Scholar
  17. 17.
    Eberly, W.: Very fast parallel polynomial arithmetic. SIAM J. Comput. 18(5), 955–976 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Hesse, W., Allender, E., Barrington, D.A.M.: Uniform constant-depth threshold circuits for division and iterated multiplication. J. Comput. Syst. Sci. 65, 695–716 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Ibarra, O.H., Moran, S.: Probabilistic algorithms for deciding equivalence of straight-line programs. J. Assoc. Comput. Mach. 30(1), 217–228 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Impagliazzo, R., Wigderson, A.: P = BPP if E requires exponential circuits: Derandomizing the XOR lemma. In: Proceedings of the 29th Annual ACM Symposium on the Theory of Computing, STOC 1997, pp. 220–229. ACM Press (1997)Google Scholar
  21. 21.
    Kabanets, V., Impagliazzo, R.: Derandomizing polynomial identity tests means proving circuit lower bounds. Comput. Complex. 13(1–2), 1–46 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Kargapolov, M.I., Merzljakov, J.I.: Fundamentals of the Theory of Groups, Volume 62 of Graduate Texts in Mathematics. Springer-Verlag, New York (1979)zbMATHGoogle Scholar
  23. 23.
    Kharlampovič, O.G.: A finitely presented solvable group with unsolvable word problem (Russian). Izv. Akad. Nauk SSSR Ser. Mat. 45(4), 852–873 (1981)MathSciNetGoogle Scholar
  24. 24.
    Knuth, D .E.: The Art of Computer Programming, Volume 2: Seminumerical Algorithmus, 3rd edn. Addison-Wesley, Boston (1998)zbMATHGoogle Scholar
  25. 25.
    König, D., Lohrey, M.: Parallel identity testing for algebraic branching programs with big powers and applications. In: Proceedings of Mathematical Foundations of Computer Science, MFCS 2015. Lecture Notes in Computer Science 9235, pp. 445–458. Springer (2015)Google Scholar
  26. 26.
    Lipton, R.J., Zalcstein, Y.: Word problems solvable in logspace. J. Assoc. Comput. Mach. 24(3), 522–526 (1977)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Lohrey, M.: Word problems and membership problems on compressed words. SIAM J. Comput. 35(5), 1210–1240 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Lohrey, M.: Algorithmics on SLP-compressed strings: a survey. Groups Complex. Cryptol. 4(2), 241–299 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Lohrey, M.: The Compressed Word Problem for Groups. Springer Briefs in Mathematics. Springer, Berlin (2014)CrossRefzbMATHGoogle Scholar
  30. 30.
    Lohrey, M.: Rational subsets of unitriangluar groups. Int. J. Algebra Comput. 25(1–2), 113–121 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Mal’cev, A.I.: On certain classes of infinite soluble groups. Am. Math. Soc. Transl. Ser. 2(2), 1–21 (1956)MathSciNetGoogle Scholar
  32. 32.
    Miller, G.: The commutator subgroup of a group generated by two operators. Proc. Natl. Acad. Sci. USA 18, 665–668 (1932)CrossRefzbMATHGoogle Scholar
  33. 33.
    Moore, C.: Predicting nonlinear cellular automata quickly by decomposing them into linear ones. Phys. D Nonlinear Phenom. 111, 27–41 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Myasnikov, A.G., Weiß, A.: TC\(\hat{\,\,}\)0 circuits for algorithmic problems in nilpotent groups. CoRR, abs/1702.06616 (2017)Google Scholar
  35. 35.
    Nikolaev, A., Ushakov, A.: Subset sum problem in polycyclic groups. CoRR, abs/1703.07406 (2017)Google Scholar
  36. 36.
    Robinson, D.: Parallel algorithms for group word problems. Ph.D. thesis, University of California, San Diego (1993)Google Scholar
  37. 37.
    Rotman, J .J.: An Introduction to the Theory of Groups, 4th edn. Springer, Berlin (1995)CrossRefzbMATHGoogle Scholar
  38. 38.
    Ruzzo, W.L.: On uniform circuit complexity. J. Comput. Syst. Sci. 22, 365–383 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Simon, H.U.: Word problems for groups and contextfree recognition. In: Proceedings of Fundamentals of Computation Theory, FCT 1979, pp. 417–422. Akademie-Verlag (1979)Google Scholar
  40. 40.
    Swan, R.: Representations of polycyclic groups. Proc. Am. Math. Soc. 18, 573–574 (1967)MathSciNetzbMATHGoogle Scholar
  41. 41.
    Tits, J.: Free subgroups in linear groups. J. Algebra 20, 250–270 (1972)MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Toda, S.: Counting problems computationally equivalent to computing the determinant. Technical Report CSIM 91-07, University of Electro-Communications, Tokyo (1991)Google Scholar
  43. 43.
    Travers, S.D.: The complexity of membership problems for circuits over sets of integers. Theor. Comput. Sci. 369(1–3), 211–229 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    Vinay, V.: Counting auxiliary pushdown automata and semi-unbounded arithmetic circuits. In: Proceedings of the Sixth Annual Structure in Complexity Theory Conference, pp. 270–284. IEEE Computer Society (1991)Google Scholar
  45. 45.
    Vollmer, H.: Introduction to Circuit Complexity. Springer, Berlin (1999)CrossRefzbMATHGoogle Scholar
  46. 46.
    Waack, S.: On the parallel complexity of linear groups. R.A.I.R.O. Inf. Théor. Appl. 25(4), 265–281 (1991)MathSciNetzbMATHGoogle Scholar
  47. 47.
    Wehrfritz, B .A .F.: Infinite Linear Groups. Springer, Berlin (1977)zbMATHGoogle Scholar
  48. 48.
    Weiß, A.: On the complexity of conjugacy in amalgamated products and HNN extensions. Ph.D. thesis, Universität Stuttgart (2015)Google Scholar
  49. 49.
    Zariski, O., Samuel, P.: Commutative Algebra, Volume I, Volume 28 of Graduate Texts in Mathematics. Springer, Berlin (1958)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Universität SiegenSiegenGermany

Personalised recommendations