, Volume 80, Issue 4, pp 1383–1409 | Cite as

Optimal Staged Self-Assembly of General Shapes

  • Cameron Chalk
  • Eric Martinez
  • Robert Schweller
  • Luis Vega
  • Andrew Winslow
  • Tim Wylie


We analyze the number of tile types t, bins b, and stages necessary to assemble \(n \times n\) squares and scaled shapes in the staged tile assembly model. For \(n \times n\) squares, we prove \(\mathcal {O}\left( \frac{\log {n} - tb - t\log t}{b^2} + \frac{\log \log b}{\log t}\right) \) stages suffice and \(\varOmega \left( \frac{\log {n} - tb - t\log t}{b^2}\right) \) are necessary for almost all n. For shapes S with Kolmogorov complexity K(S), we prove \(\mathcal {O}\left( \frac{K(S) - tb - t\log t}{b^2} + \frac{\log \log b}{\log t}\right) \) stages suffice and \(\varOmega \left( \frac{K(S) - tb - t\log t}{b^2}\right) \) are necessary to assemble a scaled version of S, for almost all S. We obtain similarly tight bounds when the more powerful flexible glues are permitted.


DNA computing Biocomputing Staging 2HAM Hierarchical 


  1. 1.
    Abel, Z., Benbernou, N., Damian, M., Demaine, E.D., Demaine, M.L., Flatland, R., Kominers, S., Schweller, R.: Shape replication through self-assembly and RNAse enzymes. In: Proceedings of the 21st Annual ACM-SIAM Symposium on Discrete Algorithms (SODA) (2010)Google Scholar
  2. 2.
    Adleman, L., Cheng, Q., Goel, A., Huang, M.D.: Running time and program size for self-assembled squares. In: Proceedings of the 33rd Annual ACM Symposium on Theory of Computing (STOC), pp. 740–748 (2001)Google Scholar
  3. 3.
    Behsaz, B., Maňuch, J., Stacho, L.: Turing universality of step-wise and stage assembly at temperature 1. In: DNA Computing and Molecular Programming (DNA), LNCS, vol. 7433, pp. 1–11. Springer (2012)Google Scholar
  4. 4.
    Cannon, S., Demaine, E.D., Demaine, M.L., Eisenstat, S., Patitz, M.J., Schweller, R., Summers, S.M., Winslow, A.: Two hands are better than one (up to constant factors): Self-assembly in the 2HAM vs. aTAM. In: Proceedings of 30th International Symposium on Theoretical Aspects of Computer Science (STACS), LIPIcs, vol. 20, pp. 172–184. Schloss Dagstuhl (2013)Google Scholar
  5. 5.
    Chalk, C., Martinez, E., Schweller, R., Vega, L., Winslow, A., Wylie, T.: Optimal staged self-assembly of general shapes. In: Proceedings of the 24th Annual European Symposium on Algorithms (ESA), LIPIcs, vol. 57, pp. 26:1–26:17. Schloss Dagstuhl (2016)Google Scholar
  6. 6.
    Chen, H.L., Doty, D.: Parallelism and time in hierarchical self-assembly. In: Proceedings of the 23rd Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 1163–1182 (2012)Google Scholar
  7. 7.
    Cheng, Q., Aggarwal, G., Goldwasser, M.H., Kao, M.Y., Schweller, R.T., de Espanés, P.M.: Complexities for generalized models of self-assembly. SIAM J. Comput. 34, 1493–1515 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Demaine, E.D., Demaine, M.L., Fekete, S.P., Ishaque, M., Rafalin, E., Schweller, R.T., Souvaine, D.L.: Staged self-assembly: nanomanufacture of arbitrary shapes with \({O}(1)\) glues. Nat. Comput. 7(3), 347–370 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Demaine, E.D., Eisenstat, S., Ishaque, M., Winslow, A.: One-dimensional staged self-assembly. Nat. Comput. 12(2), 247–258 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Demaine, E.D., Fekete, S.P., Scheffer, C., Schmidt, A.: New geometric algorithms for fully connected staged self-assembly. In: DNA Computing and Molecular Programming (DNA), LNCS, vol. 9211, pp. 104–116. Springer (2015)Google Scholar
  11. 11.
    Demaine, E.D., Patitz, M.J., Rogers, T.A., Schweller, R.T., Woods, D.: The two-handed tile assembly model is not intrinsically universal. In: Automata, Languages and Programming (ICALP), LNCS, vol. 7965, pp. 400–412. Springer (2013)Google Scholar
  12. 12.
    Demaine, E.D., Patitz, M.J., Schweller, R.T., Summers, S.M.: Self-assembly of arbitrary shapes using RNAse enzymes: meeting the Kolmogorov bound with small scale factor (extended abstract). In: Proceedings of the 28th International Symposium on Theoretical Aspects of Computer Science (STACS), LIPIcs, vol. 9, pp. 201–212. Schloss Dagstuhl (2011)Google Scholar
  13. 13.
    Doty, D.: Theory of algorithmic self-assembly. Commun. ACM 55(12), 78–88 (2012)CrossRefGoogle Scholar
  14. 14.
    Doty, D.: Producibility in hierarchical self-assembly. Nat. Comput. 15(1), 41–49 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Evans, C.: Crystals that count! Physical principles and experimental investigations of DNA tile self-assembly. Ph.D. thesis, Caltech (2014)Google Scholar
  16. 16.
    Furcy, D., Micka, S., Summers, S.M.: Optimal program-size complexity for self-assembly at temperature 1 in 3D. In: DNA Computing and Molecular Programming (DNA), LNCS, vol. 9211, pp. 71–86. Springer (2015)Google Scholar
  17. 17.
    Ke, Y., Ong, L.L., Shih, W.M., Yin, P.: Three-dimensional structures self-assembled from DNA bricks. Science 338(6111), 1177–1183 (2012)CrossRefGoogle Scholar
  18. 18.
    Labean, T.H., Park, S.H., Ahn, S.J., Reif, J.H.: Stepwise DNA self-assembly of fixed-size nanostructures. In: Foundations of Nanoscience, Self-Assembled Architectures, and Devices, pp. 179–181 (2005)Google Scholar
  19. 19.
    Li, M., Vitnyi, P.M.: An Introduction to Kolmogorov Complexity and Its Applications, 3rd edn. Springer, Berlin (2008)CrossRefGoogle Scholar
  20. 20.
    Maňuch, J., Stacho, L., Stoll, C.: Step-wise tile assembly with a constant number of tile types. Nat. Comput. 11(3), 535–550 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Patitz, M.J., Summers, S.M.: Identifying shapes using self-assembly. Algorithmica 64, 481–510 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Patitz, M.J.: An introduction to tile-based self-assembly and a survey of recent results. Nat. Comput. 13(2), 195–224 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Rothemund, P.W.K., Winfree, E.: The program-size complexity of self-assembled squares (extended abstract). In: Proceedings of the 32nd ACM Symposium on Theory of Computing (STOC), pp. 459–468 (2000)Google Scholar
  24. 24.
    Seeman, N.C.: Nucleic-acid junctions and lattices. J. Theor. Biol. 99, 237–247 (1982)CrossRefGoogle Scholar
  25. 25.
    Soloveichik, D., Winfree, E.: Complexity of self-assembled shapes. SIAM J. Comput. 36(6), 1544–1569 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Winfree, E.: Algorithmic self-assembly of DNA. Ph.D. thesis, Caltech (1998)Google Scholar
  27. 27.
    Winslow, A.: Staged self-assembly and polyomino context-free grammars. Nat. Comput. 14(2), 293–302 (2015)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Winslow, A.: A brief tour of theoretical tile self-assembly. In: Proceedings of the 22nd International Workshop on Cellular Automata and Discrete Complex Systems (AUTOMATA), LNCS, vol. 9664, pp. 26–31. Springer (2016)Google Scholar
  29. 29.
    Woods, D.: Intrinsic universality and the computational power of self-assembly. Philos. Trans. R. Soc. A 373(2046) (2015). doi: 10.1098/rsta.2014.0214

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Cameron Chalk
    • 1
  • Eric Martinez
    • 1
  • Robert Schweller
    • 1
  • Luis Vega
    • 1
  • Andrew Winslow
    • 1
  • Tim Wylie
    • 1
  1. 1.Department of Computer ScienceUniversity of Texas Rio Grande ValleyEdinburgUSA

Personalised recommendations