Algorithmica

, Volume 79, Issue 1, pp 251–270 | Cite as

A Polynomial Kernel for Block Graph Deletion

Article
  • 143 Downloads

Abstract

In the Block Graph Deletion problem, we are given a graph G on n vertices and a positive integer k, and the objective is to check whether it is possible to delete at most k vertices from G to make it a block graph, i.e., a graph in which each block is a clique. In this paper, we obtain a kernel with \({\mathcal {O}}(k^{6})\) vertices for the Block Graph Deletion problem. This is a first step to investigate polynomial kernels for deletion problems into non-trivial classes of graphs of bounded rank-width, but unbounded tree-width. Our result also implies that Chordal Vertex Deletion admits a polynomial-size kernel on diamond-free graphs. For the kernelization and its analysis, we introduce the notion of ‘complete degree’ of a vertex. We believe that the underlying idea can be potentially applied to other problems. We also prove that the Block Graph Deletion problem can be solved in time \(10^{k}\cdot n^{{\mathcal {O}}(1)}\).

Keywords

Block graph Block decomposition Kernelization algorithm Fixed parameter algorithm 

References

  1. 1.
    Agrawal, A., Kolay, S., Lokshtanov, D., Saurabh, S.: A Faster FPT Algorithm and a Smaller Kernel for Block Graph Vertex Deletion, pp. 1–13. Springer, Berlin (2016)MATHGoogle Scholar
  2. 2.
    Agrawal, A., Lokshtanov, D., Misra, P., Saurabh, S., Zehavi, M.: Feedback vertex set inspired kernel for chordal vertex deletion. In: Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’17, pp. 1383–1398. Society for Industrial and Applied Mathematics, Philadelphia (2017)Google Scholar
  3. 3.
    Bodlaender, H.L.: On disjoint cycles. In: Proceedings of the 17th International Workshop, WG ’91, pp. 230–238. Springer, London (1992)Google Scholar
  4. 4.
    Bonnet, É., Brettell, N., Kwon, O., Marx, D.: Parameterized Vertex Deletion Problems for Hereditary Graph Classes with a Block Property, pp. 233–244. Springer, Berlin (2016)Google Scholar
  5. 5.
    Cao, Y., Chen, J., Liu, Y.: On feedback vertex set: New measure and new structures. Algorithmica 73(1), 63–86 (2015)Google Scholar
  6. 6.
    Cao, Y., Marx, D.: Chordal editing is fixed-parameter tractable. Algorithmica 75(1), 118–137 (2016)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Chen, J., Fomin, F.V., Liu, Y., Lu, S., Villanger, Y.: Improved algorithms for feedback vertex set problems. J. Comput. Syst. Sci. 74(7), 1188–1198 (2008)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Courcelle, B.: The monadic second-order logic of graphs. I. Recognizable sets of finite graphs. Inf. Comput. 85(1), 12–75 (1990)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Cygan, M., Pilipczuk, M., Pilipczuk, M., Wojtaszczyk, J.: An improved fpt algorithm and quadratic kernel for pathwidth one vertex deletion. In: Raman, V., Saurabh, S. (eds.) Parameterized and Exact Computation. Lecture Notes in Computer Science, pp. 95–106. Springer, Berlin (2010)CrossRefGoogle Scholar
  10. 10.
    Cygan, M., Nederlof, J., Pilipczuk, M., Pilipczuk, M., van Rooij, J.M.M., Wojtaszczyk, J.O.: Solving connectivity problems parameterized by treewidth in single exponential time (extended abstract). In: 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science—FOCS 2011, pp. 150–159. IEEE Computer Society, Los Alamitos (2011)Google Scholar
  11. 11.
    Cygan, M., Pilipczuk, M., Pilipczuk, M., Wojtaszczyk, J.O.: Subset feedback vertex set is fixed-parameter tractable. SIAM J. Discret. Math. 27(1), 290–309 (2013)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Dehne, F., Fellows, M., Langston, M., Rosamond, F., Stevens, K.: An \({O}(2^{O(k)}n^3)\) fpt algorithm for the undirected feedback vertex set problem. Theory Comput. Syst. 41(3), 479–492 (2007)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Downey, R., Fellows, M.: Fixed-parameter tractability and completeness. III. Some structural aspects of the W hierarchy. In: Ambos-Spies, K., Homer, S., Schöning, U. (eds.) Complexity Theory, pp. 191–225. Cambridge University Press, Cambridge (1993)Google Scholar
  14. 14.
    Fomin, F.V., Lokshtanov, D., Misra, N., Saurabh, S.: Planar F-deletion: Approximation, kernelization and optimal FPT algorithms. In: 53rd Annual IEEE Symposium on Foundations of Computer Science, FOCS 2012, New Brunswick, 20–23 Oct 2012, pp. 470–479 (2012)Google Scholar
  15. 15.
    Gallai, T.: Maximum-minimum Sätze und verallgemeinerte Faktoren von Graphen. Acta Math. Acad. Sci. Hungar. 12, 131–173 (1961)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Guo, J., Gramm, J., Hüffner, F., Niedermeier, R., Wernicke, S.: Compression-based fixed-parameter algorithms for feedback vertex set and edge bipartization. J. Comput. Syst. Sci. 72(8), 1386–1396 (2006)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Hopcroft, J., Tarjan, R.: Algorithm 447: efficient algorithms for graph manipulation. Commun. ACM 16(6), 372–378 (1973)CrossRefGoogle Scholar
  18. 18.
    Jansen, B.M.P., Pilipczuk, M.: Approximation and kernelization for chordal vertex deletion. In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’17, pp. 1399–1418. Society for Industrial and Applied Mathematics, Philadelphia (2017)Google Scholar
  19. 19.
    Kim, E.J., Kwon, O.: A Polynomial Kernel for Block Graph Deletion. In: Husfeldt, T., Kanj, I. (eds.) 10th International Symposium on Parameterized and Exact Computation (IPEC 2015). Leibniz International Proceedings in Informatics (LIPIcs), vol. 43, pp. 270–281. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl (2015)Google Scholar
  20. 20.
    Kanj, I., Pelsmajer, M., Schaefer, M.: Parameterized algorithms for feedback vertex set. In: Downey, R., Fellows, M., Dehne, F. (eds.) Parameterized and Exact Computation. Lecture Notes in Computer Science, pp. 235–247. Springer, Berlin (2004)CrossRefGoogle Scholar
  21. 21.
    Kim, E.J., Langer, A., Paul, C., Reidl, F., Rossmanith, P., Sau, I., Sikdar, S.: Linear kernels and single-exponential algorithms via protrusion decompositions. ACM Trans. Algorithms, 12(2):Art. 21, 41 (2016)Google Scholar
  22. 22.
    Kociumaka, T., Pilipczuk, M.: Faster deterministic feedback vertex set. Inf. Process. Lett. 114(10), 556–560 (2014)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Misra, N., Philip, G., Raman, V., Saurabh, S.: On parameterized independent feedback vertex set. Theor. Comput. Sci. 461(0):65–75 (2012). 17th International Computing and Combinatorics Conference (COCOON 2011)Google Scholar
  24. 24.
    Oum, S.: Rank-width and vertex-minors. J. Comb. Theory Ser. B 95(1), 79–100 (2005)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Raman, V., Saurabh, S., Subramanian, C.R.: Faster fixed parameter tractable algorithms for undirected feedback vertex set. In: Bose, P., Morin, P. (eds.) Algorithms and Computation, Volume 2518 of Lecture Notes in Computer Science, pp. 241–248. Springer, Berlin (2002)Google Scholar
  26. 26.
    Reed, B., Smith, K., Vetta, A.: Finding odd cycle transversals. Oper. Res. Lett. 32(4), 299–301 (2004)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Robertson, N., Seymour, P.D.: Graph minors. II. Algorithmic aspects of tree-width. J. Algorithms 7(3), 309–322 (1986)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Thomassé., S.: A \(4{k}^2\) kernel for feedback vertex set. ACM Trans. Algorithms 6(2), 32:1–32:8 (2010)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.LAMSADECNRS - Université Paris DauphineParisFrance
  2. 2.Logic and SemanticsTechnische Universität BerlinBerlinGermany

Personalised recommendations