Algorithmica

, Volume 79, Issue 1, pp 66–95 | Cite as

An FPT Algorithm and a Polynomial Kernel for Linear Rankwidth-1 Vertex Deletion

  • Mamadou Moustapha Kanté
  • Eun Jung Kim
  • O-joung Kwon
  • Christophe Paul
Article
  • 191 Downloads

Abstract

Linear rankwidth is a linearized variant of rankwidth, introduced by Oum and Seymour (J Comb Theory Ser B 96(4):514–528, 2006). Motivated from recent development on graph modification problems regarding classes of graphs of bounded treewidth or pathwidth, we study the Linear Rankwidth-1 Vertex Deletion problem (shortly, LRW1-Vertex Deletion). In the LRW1-Vertex Deletion problem, given an n-vertex graph G and a positive integer k, we want to decide whether there is a set of at most k vertices whose removal turns G into a graph of linear rankwidth at most 1 and find such a vertex set if one exists. While the meta-theorem of Courcelle, Makowsky, and Rotics implies that LRW1-Vertex Deletion can be solved in time \(f(k)\cdot n^3\) for some function f, it is not clear whether this problem allows a running time with a modest exponential function. We first establish that LRW1-Vertex Deletion can be solved in time \(8^k\cdot n^{{\mathcal {O}}(1)}\). The major obstacle to this end is how to handle a long induced cycle as an obstruction. To fix this issue, we define necklace graphs and investigate their structural properties. Later, we reduce the polynomial factor by refining the trivial branching step based on a cliquewidth expression of a graph, and obtain an algorithm that runs in time \(2^{{\mathcal {O}}(k)}\cdot n^4\). We also prove that the running time cannot be improved to \(2^{o(k)}\cdot n^{{\mathcal {O}}(1)}\) under the Exponential Time Hypothesis assumption. Lastly, we show that the LRW1-Vertex Deletion problem admits a polynomial kernel.

Keywords

Linear rankwidth Rankwidth Cliquewidth Thread graph Necklace graph 

Notes

Acknowledgments

O-joung Kwon would like to thank Sang-il Oum for suggesting the refined branching algorithm using cliquewidth.

References

  1. 1.
    Adler, I., Farley, A.M., Proskurowski, A.: Obstructions for linear rank-width at most 1. Discrete Appl. Math. 168, 3–13 (2014)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Adler, I., Kanté, M.M., Kwon, O.: Linear rank-width of distance-hereditary graphs II. Vertex-minor obstructions. preprint (2015). arXiv:1508.04718
  3. 3.
    Adler, I., Kanté, M.M., Kwon, O.: Linear rank-width of distance-hereditary graphs I. A polynomial-time algorithm. Algorithmica (2016). doi: 10.1007/s00453-016-0164-5
  4. 4.
    Bandelt, H.-J., Mulder, H.M.: Distance-hereditary graphs. J. Comb. Theory Ser. B 41(2), 182–208 (1986)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Bui-Xuan, B., Kanté, M.M., Limouzy, V.: A note on graphs of linear rank-width 1. preprint (2013). arXiv:1306.1345
  6. 6.
    Cai, L., Juedes, D.: On the existence of subexponential parameterized algorithms. J. Comput. Syst. Sci. 67(4), 789–807 (2003). (Special issue on parameterized computation and complexity)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Cao, Y.: Unit interval editing is fixed-parameter tractable. In: Halldórsson, M.M., Iwama, K., Kobayashi, N., Speckmann, B. (eds.) Automata, Languages, and Programming. Part I, Volume 9134 of Lecture Notes in Computer Science, pp. 306–317. Springer, Heidelberg (2015)Google Scholar
  8. 8.
    Cao, Y., Marx, D.: Interval deletion is fixed-parameter tractable. ACM Trans. Algorithms 11(3), Art. 21, 35 (2015)Google Scholar
  9. 9.
    Chvátal, V., Hammer, P.L.: Aggregation of inequalities in integer programming. In: Studies in Integer Programming, Annals of Discrete Mathematics (Proceedings Workshop, Bonn, 1975), vol. 1, pp. 145–162. North-Holland, Amsterdam (1977)Google Scholar
  10. 10.
    Courcelle, B.: The monadic second-order logic of graphs. I. Recognizable sets of finite graphs. Inf. Comput. 85(1), 12–75 (1990)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Courcelle, B., Kanté, M.M.: Graph operations characterizing rank-width. Discrete Appl. Math. 157(4), 627–640 (2009)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Courcelle, B., Makowsky, J.A., Rotics, U.: Linear time solvable optimization problems on graphs of bounded clique-width. Theory Comput. Syst. 33(2), 125–150 (2000)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Courcelle, B., Oum, S.: Vertex-minors, monadic second-order logic, and a conjecture by Seese. J. Comb. Theory Ser. B 97(1), 91–126 (2007)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Cunningham, W.H.: Decomposition of directed graphs. SIAM J. Algebraic Discrete Methods 3(2), 214–228 (1982)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Cygan, M., Pilipczuk, M., Pilipczuk, M., Wojtaszczyk, J.O.: An improved FPT algorithm and a quadratic kernel for pathwidth one vertex deletion. Algorithmica 64(1), 170–188 (2012)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Dahlhaus, E.: Parallel algorithms for hierarchical clustering and applications to split decomposition and parity graph recognition. J. Algorithms 36(2), 205–240 (2000)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Eiben, E., Ganian, R., Kwon, O.: A single-exponential fixed-parameter algorithm for distance-hereditary vertex deletion. In: Faliszewski, P., Muscholl, A., Niedermeier, R. (eds.) 41st International Symposium on Mathematical Foundations of Computer Science (MFCS 2016), Volume 58 of Leibniz International Proceedings in Informatics (LIPIcs), pp. 1–34. Dagstuhl, Germany (2016)Google Scholar
  18. 18.
    Fomin, F.V., Lokshtanov, D., Misra, N., Saurabh, S.: Planar F-Deletion: approximation, kernelization and optimal FPT algorithms. In: 2012 IEEE 53rd Annual Symposium on Foundations of Computer Science-FOCS 2012, pp. 470–479. IEEE Computer Society, Los Alamitos, CA (2012)Google Scholar
  19. 19.
    Fomin, F.V., Saurabh, S., Villanger, Y.: A polynomial kernel for proper interval vertex deletion. SIAM J. Discrete Math. 27(4), 1964–1976 (2013)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Frick, M., Grohe, M.: The complexity of first-order and monadic second-order logic revisited. Ann. Pure Appl. Logic 130(1–3), 3–31 (2004)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Ganian, R.: Thread graphs, linear rank-width and their algorithmic applications. In: Iliopoulos, C.S., Smyth, W.F. (eds.) Combinatorial Algorithms, Volume 6460 of Lecture Notes in Computer Science, pp. 38–42. Springer, Heidelberg (2011)Google Scholar
  22. 22.
    Ganian, R., Hliněný, P.: On parse trees and Myhill-Nerode-type tools for handling graphs of bounded rank-width. Discrete Appl. Math. 158(7), 851–867 (2010)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Geelen, J., Gerards, B., Whittle, G.: On Rota’s conjecture and excluded minors containing large projective geometries. J. Comb. Theory Ser. B 96(3), 405–425 (2006)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Gioan, E., Paul, C.: Split decomposition and graph-labelled trees: characterizations and fully dynamic algorithms for totally decomposable graphs. Discrete Appl. Math. 160(6), 708–733 (2012)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Hall, R., Oxley, J., Semple, C.: The structure of 3-connected matroids of path width three. Eur. J. Comb. 28(3), 964–989 (2007)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential complexity? J. Comput. Syst. Sci. 63(4), 512–530 (2001). Special issue on FOCS 98. Palo Alto, CAMathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Jeong, J., Kim, E.J., Oum, S.: Constructive algorithm for path-width of matroids. In: Krauthgamer, R. (ed.) Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2016, Arlington, VA, USA, January 10–12, 2016, pp. 1695–1704. SIAM (2016)Google Scholar
  28. 28.
    Jeong, J., Kwon, O., Oum, S.: Excluded vertex-minors for graphs of linear rank-width at most \(k\). Eur. J. Comb. 41, 242–257 (2014)MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Kanté, M.M.: Well-quasi-ordering of matrices under Schur complement and applications to directed graphs. Eur. J. Comb. 33(8), 1820–1841 (2012)MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Kanté, M.M., Kim, E.J., Kwon, O.-J., Paul, C.: An FPT algorithm and a polynomial kernel for linear rankwidth-1 vertex deletion. In: 10th International Symposium on Parameterized and Exact Computation, Volume-43 of LIPIcs. Leibniz International Proceedings in Informatics, pp. 138–150. Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern (2015)Google Scholar
  31. 31.
    Kashyap, N.: Matroid pathwidth and code trellis complexity. SIAM J. Discrete Math. 22(1), 256–272 (2008)MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Kim, E.J., Langer, A., Paul, C., Reidl, F., Rossmanith, P., Sau, I., Sikdar, S.: Linear kernels and single-exponential algorithms via protrusion decompositions. ACM Trans. Algorithms 12(2), Art. 21, 41 (2016)Google Scholar
  33. 33.
    Koutsonas, A., Thilikos, D.M., Yamazaki, K.: Outerplanar obstructions for matroid pathwidth. Discrete Math. 315, 95–101 (2014)MathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    Li, W., Yang, Y., Chen, J., Wang, J.: Further Kernelization of Proper Interval Vertex Deletion: New Observations and Refined Analysis. preprint (2016). arXiv:1606.01925
  35. 35.
    Oum, S.: Rank-width and vertex-minors. J. Comb. Theory Ser. B 95(1), 79–100 (2005)MathSciNetCrossRefMATHGoogle Scholar
  36. 36.
    Oum, S.: Approximating rank-width and clique-width quickly. ACM Trans. Algorithms 5(1), Art. 10, 20 (2008)Google Scholar
  37. 37.
    Oum, S., Seymour, P.: Approximating clique-width and branch-width. J. Comb. Theory Ser. B 96(4), 514–528 (2006)MathSciNetCrossRefMATHGoogle Scholar
  38. 38.
    Philip, G., Raman, V., Villanger, Y.: A quartic kernel for pathwidth-one vertex deletion. In: Thilikos, D. (ed.) Graph Theoretic Concepts in Computer Science, Volume 6410 of Lecture Notes in Computer Science, pp. 196–207. Springer, Berlin, Heidelberg (2010)Google Scholar
  39. 39.
    Robertson, N., Seymour, P.D.: Graph minors. XX. Wagner’s conjecture. J. Comb. Theory Ser. B 92(2), 325–357 (2004)MathSciNetCrossRefMATHGoogle Scholar
  40. 40.
    van Bevern, R., Komusiewicz, C., Moser, H., Niedermeier, R.: Measuring indifference: unit interval vertex deletion. In: Thilikos, D.M. (ed.) Graph-Theoretic Concepts in Computer Science, Volume 6410 of Lecture Notes in Computer Science, pp. 232–243. Springer, Berlin (2010)Google Scholar
  41. 41.
    van’t Hof, P., Villanger, Y.: Proper interval vertex deletion. Algorithmica 65(4), 845–867 (2013)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Mamadou Moustapha Kanté
    • 1
  • Eun Jung Kim
    • 2
  • O-joung Kwon
    • 3
    • 4
  • Christophe Paul
    • 5
  1. 1.LIMOS, CNRS, Université Clermont AuvergneAubièreFrance
  2. 2.LAMSADECNRS - Université Paris DauphineParisFrance
  3. 3.Institute for Computer Science and ControlHungarian Academy of SciencesBudapestHungary
  4. 4.Institute of Software Technology and Theoretical Computer ScienceTechnische UniversitätBerlinGermany
  5. 5.LIRMMCNRS - Université MontpellierMontpellierFrance

Personalised recommendations