Abstract
In this paper, we study the parameterized complexity of the linear complementarity problem (LCP), which is one of the most fundamental mathematical optimization problems. The parameters we focus on are the sparsities of the input and the output of the LCP: the maximum numbers of nonzero entries per row/column in the coefficient matrix and the number of nonzero entries in a solution. Our main result is to present a fixedparameter algorithm for the LCP with the combined parameter. We also show that if we drop any of the three parameters, then the LCP is NPhard or W[1]hard. In addition, we show the nonexistence of a polynomial kernel for the LCP unless coNP \(\subseteq \) NP/poly.
Similar content being viewed by others
References
Arvind, V., Köbler, J., Kuhnert, S., Torán, J.: Solving linear equations parameterized by Hamming weight. Algorithmica 75(2), 322–338 (2016)
Björklund, H., Svensson, O., Vorobyov, S.: Linear complementarity algorithms for mean payoff games. Technical Report 200505, DIMACS: Center for Discrete Mathematics and Theoretical Computer Science (2005)
Bodlaender, H.L., Downey, R.G., Fellows, M.R., Hermelin, D.: On problems without polynomial kernels. J. Comput. Syst. Sci. 75, 423–434 (2009)
Chen, X., Deng, X., Teng, S.: Sparse games are hard. In: Spirakis, P., Mavronicolas, M., Kontogiannis, S. (eds.) Internet and Network Economics: Second International Workshop, WINE 2006, Patras, Greece, December 15–17, pp. 262–273. Springer, Berlin, Heidelberg (2006)
Chen, X., Deng, X., Teng, S.: Settling the complexity of computing twoplayer Nash equilibria. J. ACM 56, 14:1–14:57 (2009)
Chung, S.J.: NPcompleteness of the linear complementarity problem. J. Optim. Theory Appl. 60, 393–399 (1989)
Codenotti, B., Leoncini, M., Resta, G.: Efficient computation of Nash equilibria for very sparse win–lose bimatrix games. In: Azar, Y., Erlebach, T. (eds.) Algorithms—ESA 2006: 14th Annual European Symposium, Zurich, Switzerland, September 11–13, pp. 232–243. Springer, Berlin, Heidelberg (2006)
Cohen, E., Megiddo, N.: Improved algorithms for linear inequalities with two variables per inequality. SIAM J. Comput. 23, 1313–1347 (1994)
Cottle, R.W.: The principal pivoting method of quadratic programming. In: Mathematics of Decision Sciences, Part 1, pp. 142–162. American Mathematical Society, R.I., Providence (1968)
Cottle, R.W., Dantzig, G.B.: Complementary pivot theory of mathematical programming. Linear Algebra Appl. 1, 103–125 (1968)
Cottle, R.W., Pang, J.S., Stone, R.E.: The Linear Complementarity Problem. Academic Press, Boston (1992)
Damaschke, P.: Sparse solutions of sparse linear systems: fixedparameter tractability and an application of complex group testing. Theor. Comput. Sci. 511, 137–146 (2013)
Daskalakis, C., Papadimitriou, C.H.: On oblivious PTAS’s for Nash equilibrium. In: Mitzenmacher, M. (ed.) Proceedings of the 41st Annual ACM Symposium on Theory of Computing, STOC ’09, Bethesda, MD, USA, May 31–June 02, pp. 75–84. ACM, New York (2009)
Downey, R.G., Fellows, M.R.: Fixedparameter intractability. In: Proceedings of the 7th Annual Structure in Complexity Theory Conference, Boston, MA, June 22–25, pp. 36–49. IEEE Computer Society Press, Los Alamitos, California (1992)
Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, New York (1999)
EstivillCastro, V., Parsa, M.: Computing Nash equilibria gets harder: new results show hardness even for parameterized complexity. In: Downey, R., Manyem, P. (eds.) Proceedings of the 15th Australasian Symposium on Computing: The Australasian Theory, CATS ’09, Wellington, New Zealand, vol. 94, pp. 83–90. Australian Computer Society, Inc., Darlinghurst, Australia (2009)
Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Berlin (2006)
Gilboa, I., Zemel, E.: Nash and correlated equilibria: some complexity considerations. Games Econ. Behav. 1, 80–93 (1989)
Hermelin, D., Huang, C., Kratsch, S., Wahlström, M.: Parameterized twoplayer Nash equilibrium. Algorithmica 65, 1–15 (2013)
Hochbaum, D.S., Naor, J.: Simple and fast algorithms for linear and integer programs with two variables per inequality. SIAM J. Comput. 23, 1179–1192 (1994)
Kratsch, S.: On polynomial kernels for integer linear programs: covering, packing and feasibility. In: Bodlaender, H.L., Italiano, G.F. (eds.) Algorithms—ESA 2013: 21st Annual European Symposium, Sophia Antipolis, France, September 2–4, pp. 647–658. Springer, Berlin, Heidelberg (2013)
Kratsch, S.: On polynomial kernels for sparse integer linear programs. J. Comput. Syst. Sci. 82(5), 758–766 (2016)
Kratsch, S., Quyen, V.A.: On kernels for covering and packing ILPs with small coefficients. In: Cygan, M., Heggernes, P. (eds.) Parameterized and Exact Computation: 9th International Symposium, IPEC 2014, Wroclaw, Poland, September 10–12, pp. 307–318. Springer International Publishing, Cham (2014)
Lemke, C.E.: Bimatrix equilibrium points and mathematical programming. Manag. Sci. 11, 681–689 (1965)
Murty, K.G.: Linear Complementarity, Linear and Nonlinear Programming (Internet Edition). http://ioe.engin.umich.edu/people/fac/books/murty/linear_complementarity_webbook/lcpcomplete.pdf (1997). Accessed 11 Oct 2016
Schaefer, T.J.: The complexity of satisfiability problems. In: Lipton, R.J., Burkhard, W., Savitch, W., Friedman, E.P., Aho, A. (eds.) Proceedings of the 10th Annual ACM Symposium on Theory of Computing, STOC ’78, San Diego, California, USA, pp. 216–226. ACM, New York (1978)
Sumita, H., Kakimura, N., Makino, K.: The linear complementarity problems with a few variables per constraint. Math. Oper. Res. 40, 1015–1026 (2015)
Acknowledgments
The authors thank the referees for their valuable comments on this manuscript. The first author is supported by GrantinAid for JSPS Fellows, and by JST, ERATO, Kawarabayashi Large Graph Project. The second author is supported by JSPS KAKENHI Grant Numbers 25730001 and 24106002, and by JST, ERATO, Kawarabayashi Large Graph Project. The third author is supported by JSPS KAKENHI Grant Numbers 24106002 and 26280001.
Author information
Authors and Affiliations
Corresponding author
Appendices
Appendix 1: Reduction of the LCP to the \(3\)ColumnSparse LCP
In this section, we prove the following proposition.
Proposition 5.9
The LCP is polynomially reducible to the \(3\)columnsparse LCP.
Proof
Let \(\mathrm{LCP}\left( M, q\right) \) be an LCP instance of order n. We transform it to an equivalent \(3\)columnsparse LCP instance as follows.
For each \(j=1, \ldots , n\), let \(m^{i, j}\) be a vector whose ith entry is \(M_{ij}\) and others are zero. Note that \(M_{*j} = \sum _{i=1}^n m^{i,j}\). Thus \(\mathrm{LCP}\left( M, q\right) \) is equivalent to finding a vector z satisfying
For each variable \(z_j \ (j = 1, \ldots , n)\), we introduce n copies \(z^1_j, \ldots , z^n_j\) of \(z_j\). Then (25) is equivalent to the following system:
and
for \(j=1, \ldots , n\).
We observe that (27) can be rewritten as \(z_j \ge z^1_j \ge \dots \ge z^n_j \ge z_j\). Thus by introducing a new variable \(z^0_j\), we replace (27) with linear inequalities with complementarity conditions:
where we denote \(z^{n+1}_j = z_j\).
Let \(\mathrm{LCP}\left( M', q'\right) \) be an LCP instance defined by (26) and (28). We see that \(\mathrm{LCP}\left( M, q\right) \) is equivalent to \(\mathrm{LCP}\left( M', q'\right) \), and \(\mathrm{LCP}\left( M', q'\right) \) has \(n(n+2)\) variables by construction. In addition, each variable appears at most three times in the first linear inequalities in (26) and (28), which implies that \(\mathrm{LCP}\left( M', q'\right) \) is \(3\)columnsparse. \(\square \)
Appendix 2: The \(1\)ColumnSparse LCP
In this section, we show that the \(1\)columnsparse LCP is solvable in linear time. Our algorithm finds an index set X such that any solution z of the LCP satisfies \(z_X = {\varvec{0}}\), by using the following lemma.
Lemma 5.10
For any vector a and any number \(b \ne 0\), we have the following statement.

(a)
\(b< 0, \ a \le {\varvec{0}}\Leftrightarrow a^\top x + b < 0\) for all vectors \(x \ge {\varvec{0}}\).

(b)
\(b> 0, \ a \ge {\varvec{0}}\Leftrightarrow a^\top x + b > 0\) for all vectors \(x \ge {\varvec{0}}\).

(c)
\(a_i /b < 0\) for some index i \(\Leftrightarrow a^\top x + b = 0\) has a solution \(x \ge {\varvec{0}}\) with exactly one positive entry \(x_i\).
Proof
It is easy to see (a) and (b). We show (c). If we have an index i with \(a_i /b < 0\), then the vector x defined by \(x_i = b/a_i > 0\) and \(x_j = 0 \ (j \ne i)\) satisfies \(a^\top x + b = 0\). Conversely, if we have a vector x such that \(a_i x_i + b = 0\) for some i with \(x_i > 0\), then we have \(a_i / b = 1/x_i < 0\). \(\square \)
Let \(\mathrm{LCP}\left( M, q\right) \) be a \(1\)columnsparse LCP instance. If \(q_i < 0\) and \(M_{i *} \le {\varvec{0}}\) for some i, then \((Mz+q)_i = M_{i *} z + q_i \ge 0, \ x \ge {\varvec{0}}\) is never satisfied by (a) in Lemma 5.10, and \(\mathrm{LCP}\left( M, q\right) \) has no solution. If \(q_i > 0\) and \(M_{i *} \ge {\varvec{0}}\), then by (b) in Lemma 5.10, \((Mz+q)_i > 0\) for all \(x \ge {\varvec{0}}\), which implies that any solution z of \(\mathrm{LCP}\left( M, q\right) \) satisfies \(z_i = 0\) by the complementarity. Using these observations, our algorithm finds a solution of \(\mathrm{LCP}\left( M, q\right) \) as follows.
For each \(i = 1, \ldots , n\), let \(T_i = \{j \mid M_{ij} > 0\}\) if \(q_i <0\), and \(T_i = \{j \mid M_{ij} < 0\}\) if \(q_i > 0\). Set \(S = [n]\).
Find an index \(i \in S\) with \(q_i \ne 0\) and \(T_i = \emptyset \). If \(q_i < 0\), then \(\mathrm{LCP}\left( M, q\right) \) has no solution. Otherwise, set \(S \leftarrow S {\setminus } \{i \}\), and set \(T_j \leftarrow T_j {\setminus } \{i\}\) for each j with \(i \in T_j\).
Repeat the above procedure until \(T_i \ne \emptyset \) holds for any \(i \in S\) with \(q_i \ne 0\), i.e., \(q_i = 0\) or \(\frac{1}{q_i} M_{iS} \not \ge {\varvec{0}}\) for all \(i \in S\). For each \(i \in S\) with \(q_i =0\), let \(x^i = {\varvec{0}}\in {\mathbb {R}}^S\). For \(i \in S\) with \(q_i \ne 0\), let \(x^i\) be a solution of \(M_{iS} x^i+q_i = 0, \ x^i \ge {\varvec{0}}\), which can be found in linear time by using (c) in Lemma 5.10. Since \(\mathrm{LCP}\left( M, q\right) \) is \(1\)columnsparse, the sets of variables appearing in \(M_{i *} z + q_i \ge 0 \ (i \in S)\) are disjoint from each other. Thus the vector \(x=\sum _{i\in S}x^i\) satisfies \(M_{SS} x+ q_S = {\varvec{0}}\). Therefore, since we have \(M_{\overline{S}S} x + q_{\overline{S}} \ge {\varvec{0}}\), the vector z with \(z_S = x\) and \(z_{\overline{S}} = {\varvec{0}}\) is a solution of \(\mathrm{LCP}\left( M, q\right) \).
Thus we obtain the following proposition.
Proposition 5.11
The \(1\)columnsparse LCP is solvable in linear time.
Rights and permissions
About this article
Cite this article
Sumita, H., Kakimura, N. & Makino, K. Parameterized Complexity of Sparse Linear Complementarity Problems. Algorithmica 79, 42–65 (2017). https://doi.org/10.1007/s0045301602295
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s0045301602295