Algorithmica

, Volume 79, Issue 2, pp 509–529

Optimal Parallel Quantum Query Algorithms

  • Stacey Jeffery
  • Frederic Magniez
  • Ronald de Wolf
Article
  • 71 Downloads

Abstract

We study the complexity of quantum query algorithms that make p queries in parallel in each timestep. This model is in part motivated by the fact that decoherence times of qubits are typically small, so it makes sense to parallelize quantum algorithms as much as possible. We show tight bounds for a number of problems, specifically \(\Theta ((n/p)^{2/3})\)p-parallel queries for element distinctness and \(\Theta ((n/p)^{k/(k+1)})\) for \(k\)-sum. Our upper bounds are obtained by parallelized quantum walk algorithms, and our lower bounds are based on a relatively small modification of the adversary lower bound method, combined with recent results of Belovs et al. on learning graphs. We also prove some general bounds, in particular that quantum and classical p-parallel query complexity are polynomially related for all total functions f when p is small compared to f’s block sensitivity.

Keywords

Quantum algorithms Query complexity Parallel algorithms Lower bounds 

References

  1. 1.
    Aaronson, S., Ambainis, A.: Forrelation: a problem that optimally separates quantum from classical computing. In: Proceedings of 47th ACM STOC, pp. 307–316 (2015). arXiv:1411.5729
  2. 2.
    Aaronson, S., Ben-David, S., Kothari, R.: Separations in query complexity using cheat sheets. In: Proceedings of 48th STOC, pp. 863–876 (2016)Google Scholar
  3. 3.
    Aaronson, S., Shi, Y.: Quantum lower bounds for the collision and the element distinctness problems. J. ACM 51(4), 595–605 (2004)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Ambainis, A.: Quantum lower bounds by quantum arguments. J. Comput. Syst. Sci. 64(4), 750–767 (2002)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Ambainis, A.: Quantum walk algorithm for element distinctness. SIAM J. Comput. 37(1), 210–239 (2007)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Ambainis, A., Balodis, K., Belovs, A., Lee, T., Santha, M., Smotrovs, J.: Separations in query complexity based on pointer functions. In: Proceedings of 48th STOC, pp 800–813 (2016)Google Scholar
  7. 7.
    Ambainis, A., Bačkurs, A., Smotrovs, J., de Wolf, R.: Optimal quantum query bounds for almost all Boolean functions. In: Proceedings of 30th STACS, pp. 446–453 (2013)Google Scholar
  8. 8.
    Beals, R., Brierley, S., Gray, O., Harrow, A., Kutin, S., Linden, N., Shepherd, D., Stather, M.: Efficient distributed quantum computing. Proc. R. Soc A 469, 2153 (2013)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Beals, R., Buhrman, H., Cleve, R., Mosca, M., de Wolf, R.: Quantum lower bounds by polynomials. J. ACM 48(4), 778–797 (2001)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    de Beaudrap, N., Cleve, R., Watrous, J.: Sharp quantum vs. classical query complexity separations. Algorithmica 34(4), 449–461 (2002)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Belovs, A.: Learning-graph-based quantum algorithm for k-distinctness. In: Proceedings of 53rd IEEE FOCS, pp. 207–216 (2012)Google Scholar
  12. 12.
    Belovs, A.: Span programs for functions with constant-sized 1-certificates. In: Proceedings of 43rd ACM STOC, pp. 77–84 (2012)Google Scholar
  13. 13.
    Belovs, A.: Adversary lower bound for element distinctness (2012). arXiv:1204.5074
  14. 14.
    Belovs, A., Childs, A., Jeffery, S., Kothari, R., Magniez, F.: Time-efficient quantum walks for 3-distinctness. In: Proceedings of 40th ICALP(1), pp. 105–122 (2013)Google Scholar
  15. 15.
    Belovs, A., Lee, T.: Quantum algorithm for k-distinctness with prior knowledge on the input. Technical Report (2011). arXiv:1108.3022
  16. 16.
    Belovs, A., Rosmanis, A.: On the power of non-adaptive learning graphs. In: Proceedings of 28th IEEE CCC, pp. 44–55 (2013). arXiv:1210.3279v2
  17. 17.
    Belovs, A., Špalek, R.: Adversary lower bound for the k-sum problem. In: Proceedings of 4th ITCS, pp. 323–328 (2013)Google Scholar
  18. 18.
    Buhrman, H., de Wolf, R.: Complexity measures and decision tree complexity: a survey. Theor. Comput. Sci. 288(1), 21–43 (2002)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Cleve, R., Watrous, J.: Fast parallel circuits for the quantum Fourier transform. In: Proceedings of 41st IEEE FOCS, pp. 526–536 (2000)Google Scholar
  20. 20.
    van Dam, W.: Quantum oracle interrogation: getting all information for almost half the price. In: Proceedings of 39th IEEE FOCS, pp. 362–367 (1998)Google Scholar
  21. 21.
    Deutsch, D., Jozsa, R.: Rapid solution of problems by quantum computation. Proc. R. Soc. Lond. A439, 553–558 (1992)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Green, F., Homer, S., Moore, C., Pollett, C.: Counting, fanout and the complexity of quantum ACC. Quantum Inf. Comput. 2(1), 35–65 (2002)MathSciNetMATHGoogle Scholar
  23. 23.
    Grover, L., Radhakrishnan, J.: Quantum search for multiple items using parallel queries (2004). arXiv:quant-ph/0407217
  24. 24.
    Grover, L., Rudolph, T.: How significant are the known collision and element distinctness quantum algorithms? Quantum Inf. Comput. 4(3), 201–206 (2004)MathSciNetMATHGoogle Scholar
  25. 25.
    Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of 28th ACM STOC, pp. 212–219 (1996)Google Scholar
  26. 26.
    Høyer, P., Lee, T., Špalek, R.: Negative weights make adversaries stronger. In: Proceedings of 39th ACM STOC, pp. 526–535 (2007)Google Scholar
  27. 27.
    Høyer, P., Špalek, R.: Quantum fan-out is powerful. Theory Comput. 1(1), 81–103 (2005)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Jozsa, R.: An introduction to measurement based quantum computation. In: Angelakis, D.G., Christandl, M., Ekert, A. (eds.) Quantum Information Processing, pp. 137–158. IOS Press, Amsterdam (2006)Google Scholar
  29. 29.
    Lee, T., Mittal, R., Reichardt, B., Špalek, R., Szegedy, M.: Quantum query complexity of state conversion. In: Proceedings of 52nd IEEE FOCS, pp. 344–353, (2011). arXiv:1011.3020v2
  30. 30.
    Magniez, F., Nayak, A., Roland, J., Santha, M.: Search via quantum walk. SIAM J. Comput. 40(1), 142–164 (2011)MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Montanaro, A.: Nonadaptive quantum query complexity. Inf. Process. Lett. 110(24), 1110–1113 (2010)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Moore, C., Nilsson, M.: Parallel quantum computation and quantum codes. SIAM J. Comput. 31(3), 799–815 (2002)MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    Nisan, N.: CREW PRAMs and decision trees. SIAM J. Comput. 20(6), 999–1007 (1991)MathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    Nisan, N., Szegedy, M.: On the degree of Boolean functions as real polynomials. Comput. Complex. 4(4), 301–313 (1994)MathSciNetCrossRefMATHGoogle Scholar
  35. 35.
    Reichardt, B.: Span programs and quantum query complexity: The general adversary bound is nearly tight for every Boolean function. In: Proceedings of 50th IEEE FOCS, pp. 544–551 (2009)Google Scholar
  36. 36.
    Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997)MathSciNetCrossRefMATHGoogle Scholar
  37. 37.
    Simon, D.: On the power of quantum computation. SIAM J. Comput. 26(5), 1474–1483 (1997)MathSciNetCrossRefMATHGoogle Scholar
  38. 38.
    Takahashi, Y., Tani, S.: Collapse of the hierarchy of constant-depth exact quantum circuits. In: Proceedings of 28th IEEE CCC (2013)Google Scholar
  39. 39.
    Zalka, Ch.: Grover’s quantum searching algorithm is optimal. Phys. Rev. A 60, 2746–2751 (1999)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Stacey Jeffery
    • 1
  • Frederic Magniez
    • 2
  • Ronald de Wolf
    • 3
  1. 1.Institute for Quantum Information and MatterCalifornia Institute of TechnologyPasadenaUSA
  2. 2.CNRS, IRIFUniv Paris Diderot, Sorbonne Paris-CitéParisFrance
  3. 3.QuSoftCWI and University of AmsterdamAmsterdamThe Netherlands

Personalised recommendations