Advertisement

Algorithmica

, Volume 78, Issue 3, pp 968–989 | Cite as

Asynchronous Rumor Spreading on Random Graphs

  • K. Panagiotou
  • L. SpeidelEmail author
Article

Abstract

We perform a thorough study of various characteristics of the asynchronous push–pull protocol for spreading a rumor on Erdős–Rényi random graphs \(G_{n,p}\), for any \(p>c\ln (n)/n\) with \(c>1\). In particular, we provide a simple strategy for analyzing the asynchronous push–pull protocol on arbitrary graph topologies and apply this strategy to \(G_{n,p}\). We prove tight bounds of logarithmic order for the total time that is needed until the information has spread to all nodes. Surprisingly, the time required by the asynchronous push–pull protocol is asymptotically almost unaffected by the average degree of the graph. Similarly tight bounds for Erdős–Rényi random graphs have previously only been obtained for the synchronous push protocol, where it has been observed that the total running time increases significantly for sparse random graphs. Finally, we quantify the robustness of the protocol with respect to transmission and node failures. Our analysis suggests that the asynchronous protocols are particularly robust with respect to these failures compared to their synchronous counterparts.

Keywords

Gossip algorithms Asynchronous rumor spreading Push–pull protocol Random graphs 

References

  1. 1.
    Acan, H., Collevecchio, A., Mehrabian, A., Wormald, N.: On the push and pull protocol for rumour spreading. arXiv:1411.0948
  2. 2.
    Aigner, M., Ziegler, G.: Proofs from the Book. Springer, Berlin (2010)CrossRefzbMATHGoogle Scholar
  3. 3.
    Barabási, A., Albert, R.: Emergence of scaling in random networks. Science 286, 509–512 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bollobás, B.: Random Graphs, Cambridge Studies in Advanced Mathematics, vol. 73, 2nd edn. Cambridge University Press, Cambridge (2001)CrossRefGoogle Scholar
  5. 5.
    Bollobás, B., Kohayakawa, Y.: On Richardsons Model on the Hypercube. Cambridge University Press, Cambridge (1997)zbMATHGoogle Scholar
  6. 6.
    Boyd, S., Arpita, G., Balaji, P., Devavrat, S.: Gossip algorithms: Design, analysis and applications. In: Proceedings of the 24th Annual Joint Conference of the IEEE Computer and Communications Societies (INFOCOM’05), pp. 1653–1664. Miami, FL, USA (2005)Google Scholar
  7. 7.
    Boyd, S., Ghosh, A., Prabhakar, B., Shah, D.: Randomized gossip algorithms. IEEE Trans. Inf. Theory 52, 2508–2530 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Chierichetti, F., Lattanzi, S., Panconesi, A.: Almost tight bounds for rumour spreading with conductance. In: Proceedings of the 42nd ACM Symposium on Theory of Computing (STOC ’10), pp. 399–408. Cambridge, MA, USA (2010)Google Scholar
  9. 9.
    Chierichetti, F., Lattanzi, S., Panconesi, A.: Rumour spreading and graph conductance. In: Proceedings of the 21st Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’10), pp. 1657–1663. Austin, TX, USA (2010)Google Scholar
  10. 10.
    Chung, F., Lu, L.: The average distance in a random graph with given expected degrees. Proc Natl Acad Sci USA 99, 15879–15882 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Cooper, C., Frieze, A.: The cover time of sparse random graphs. Random Struct. Algorithms 30, 1–16 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Demers, A., Greene, D., Hauser, C., Irish, W., Larson, J., Shenker, S., Sturgis, H., Swinehart, D., Terry, D.: Epidemic algorithms for replicated database maintenance. In: Proceedings of the 6th Annual ACM Symposium on Principles of Distributed Computing (POCD’87), pp. 1–12. Vancouver, BC, Canada (1987)Google Scholar
  13. 13.
    Doerr, B., Fouz, M., Friedrich, T.: Social networks spread rumors in sublogarithmic time. Electron Notes Discret. Math. 38, 303–308 (2011)CrossRefzbMATHGoogle Scholar
  14. 14.
    Doerr, B., Fouz, M., Friedrich, T.: Asynchronous rumor spreading in preferential attachment graphs. In: Proceedings of the 13th Scandinavian Workshop on Algorithm Theory (SWAT’12), pp. 307–315. Helsinki, Finland (2012)Google Scholar
  15. 15.
    Feller, W.: An Introduction to Probability Theory and Its Applications, vol. 1. Wiley, New York, NY (1968)zbMATHGoogle Scholar
  16. 16.
    Fill, J.A., Pemantle, R.: Percolation, first-passage percolation and covering times for Richardson’s model on the \(n\)-cube. Ann. Appl. Probab. 3, 593–629 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Fountoulakis, N., Huber, A., Panagiotou, K.: Reliable broadcasting in random networks and the effect of density. In: Proceedings of the 29th Conference on Computer Communications (INFOCOM ’10), pp. 2552–2560. San Diego, CA, USA (2010)Google Scholar
  18. 18.
    Fountoulakis, N., Panagiotou, K., Sauerwald, T.: Ultra-fast rumor spreading in social networks. In: Proceedings of the 23rd ACM-SIAM Symposium on Discrete Algorithms (SODA ’12), pp. 1642–1660. Kyoto, Japan (2012)Google Scholar
  19. 19.
    Frieze, A., Grimmett, G.: The shortest-path problem for graphs with random arc-lengths. Discrete Appl. Math. 10, 57–77 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Giakkoupis, G.: Tight bounds for rumor spreading in graphs of a given conductance. In: Proceedings of the 28th International Symposium on Theoretical Aspects of Computer Science (STACS’11), pp. 57–68. Dortmund, Germany (2011)Google Scholar
  21. 21.
    Janson, S.: One, two and three times log n/n for paths in a complete graph with random weights. Comb. Probab. Comput. 8, 347–361 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Jelasity, M., Voulgaris, S., Guerraoui, R., Kermarrec, A.M., van Steen, M.: Gossip-based peer sampling. ACM Trans. Comput. Syst. 25, 8 (2007)CrossRefGoogle Scholar
  23. 23.
    Karp, R., Schindelhauer, C., Shenker, S., Vöcking, B.: Randomized rumor spreading. In: Proceedings of the 41th Annual Symposium on Foundations of Computer Science (FOCS’00), pp. 565–574. Redondo Beach, CA, USA (2000)Google Scholar
  24. 24.
    Panagiotou, K., Fountoulakis, N.: Rumor spreading on random regular graphs and expanders. Random Struct. Algorithms 43, 201–220 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Panagiotou, K., Pérez-Giménez, X., Sauerwald, T., Sun, H.: Randomized rumour spreading: the effect of the network topology. Comb. Probab. Comput. 24, 457–479 (2015)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Panagiotou, K., Speidel, L.: Asynchronous rumor spreading on random graphs. In: Proceedings of the 24th International Symposium on Algorithms and Computation (ISAAC’13), pp. 424–434. Hong Kong, China (2013)Google Scholar
  27. 27.
    Pittel, B.: On spreading a rumor. SIAM J. Appl. Math. 47, 213–223 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    van Renesse, R., Minsky, Y., Hayden, M.: A gossip-style failure detection service. In: Proceedings of the IFIP International Conference on Distributed Systems Platforms and Open Distributed Processing (Middleware’98), pp. 55–70. The Lake District, UK (1998)Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Mathematics InstituteUniversity of MunichMunichGermany
  2. 2.Doctoral Training Centre in Systems BiologyUniversity of OxfordOxfordUK

Personalised recommendations