Algorithmica

, Volume 78, Issue 2, pp 425–452

Strategyproof Mechanisms for Competitive Influence in Networks

  • Allan Borodin
  • Mark Braverman
  • Brendan Lucier
  • Joel Oren
Article
  • 121 Downloads

Abstract

Motivated by applications to word-of-mouth advertising, we consider a game-theoretic scenario in which competing advertisers want to target initial adopters in a social network. Each advertiser wishes to maximize the resulting cascade of influence, modeled by a general network diffusion process. However, competition between products may adversely impact the rate of adoption for any given firm. The resulting framework gives rise to complex preferences that depend on the specifics of the stochastic diffusion model and the network topology. We study this model from the perspective of a central mechanism, such as a social networking platform, that can optimize seed placement as a service for the advertisers. We ask: given the reported budgets of the competing firms, how should a mechanism choose seeds to maximize overall efficiency? Beyond the algorithmic problem, competition raises issues of strategic behaviour: rational agents should be incentivized to truthfully report their advertising budget. For a general class of influence spread models, we show that when there are two players, the social welfare can be \(\frac{e}{e-1}\)-approximated by a polynomial-time strategyproof mechanism. Our mechanism uses a dynamic programming procedure to randomize the order in which advertisers are allocated seeds according to a greedy method. For three or more players, we demonstrate that under an additional assumption (satisfied by many existing models of influence spread) there exists a simpler strategyproof \(\frac{e}{e-1}\)-approximation mechanism; notably, this natural greedy mechanism is not necessarily strategyproof when there are only two players.

Keywords

Game theory Social networks Mechanism design Influence diffusion 

References

  1. 1.
    Granovetter, M.: Threshold models of collective behavior. Am. J. Soc. 83, 1420–1443 (1978)Google Scholar
  2. 2.
    Schelling, T.: Micromotives and Macrobehavior. Norton, New York (1978)Google Scholar
  3. 3.
    Brown, J.J., Reingen, P.H.: Social ties and word of mouth referral behavior. J. Consum. Res. 14, 350–362 (1987)CrossRefGoogle Scholar
  4. 4.
    Goldenberg, J., Libai, B., Mulle, E.: Talk of the network: a complex systems look at the underlying process of word-of-mouth. Mark. Lett. 12, 211–223 (2001)Google Scholar
  5. 5.
    Centola, D., Macy, M.: Complex contagions and the weakness of long ties. Am. J. Sociol. 113, 702–734 (2007)CrossRefGoogle Scholar
  6. 6.
    Kempe, D., Kleinberg, J., Tardos, E.: Maximizing the spread of influence through a social network. In: KDD ’03: Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 137–146. ACM, New York (2003)Google Scholar
  7. 7.
    Kempe, D., Kleinberg, J., Tardos, É.: Influential nodes in a diffusion model for social networks. In: Caires, L., Italiano, G., Monteiro, L., Palamidessi, C., Yung, M. (eds.) Automata, Languages and Programming. Volume 4858 of Lecture Notes in Computer Science, vol. 3580, pp. 1127–1138. Springer, Berlin (2005)Google Scholar
  8. 8.
    Mossel, E., Roch, S.: Submodularity of influence in social networks: from local to global. SIAM J. Comput. 39, 2176–2188 (2010)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Nemhauser, G.L., Wolsey, L.A., Fisher, M.L.: An analysis of approximations for maximizing submodular set functions-II. Math. Program. 14, 265–294 (1978)CrossRefMATHGoogle Scholar
  10. 10.
    Carnes, T., Nagarajan, C., Wild, S.M., van Zuylen, A.: Maximizing influence in a competitive social network: a follower’s perspective. In: Proceedings of the Ninth International Conference on Electronic Commerce. ICEC ’07, pp. 351–360. ACM, New York (2007)Google Scholar
  11. 11.
    Bharathi, S., Kempe, D., Salek, M.: Competitive influence maximization in social networks. In: Deng, X., Graham, F. (eds.) Internet and Network Economics. Volume 4858 of Lecture Notes in Computer Science, vol. 4858, pp. 306–311. Springer, Berlin (2007)Google Scholar
  12. 12.
    Borodin, A., Filmus, Y., Oren, J.: Threshold models for competitive influence in social networks. In: Saberi, A. (ed.) Internet and Network Economics. Volume 6484 of Lecture Notes in Computer Science, vol. 6484, pp. 539–550. Springer, Berlin (2010)Google Scholar
  13. 13.
    Goyal, S., Kearns, M.: Competitive contagion in networks. In: Proceedings of the Forty-fourth Annual ACM Symposium on Theory of Computing. STOC ’12, pp. 759–774. ACM, New York, NY, USA (2012)Google Scholar
  14. 14.
    Feldman, J., Mehta, A., Mirrokni, V., Muthukrishnan, S.: Online stochastic matching: beating 1–1/e. FOCS, pp. 117–126 (2009)Google Scholar
  15. 15.
    Feldman, J., Henzinger, M., Korula, N., Mirrokni, V.S., Stein, C.: Online stochastic packing applied to display ad allocation. In: Proceedings of the 18th Annual European Conference on Algorithms: Part I. ESA’10, pp. 182–194. Springer, Berlin (2010)Google Scholar
  16. 16.
    Borodin, A., Braverman, M., Lucier, B., Oren, J.: Strategyproof mechanisms for competitive influence in networks. In: WWW, pp. 141–150 (2013)Google Scholar
  17. 17.
    Goundan, P., Schulz, A.: Revisiting the greedy approach to submodular set function maximization. Optim. Online, 1–25 (2007)Google Scholar
  18. 18.
    Dubey, P., Garg, R., De Meyer, B.: Competing for customers in a social network: the quasi-linear case. In: Spirakis, P., Mavronicolas, M., Kontogiannis, S. (eds.) Internet and Network Economics. Volume 4286 of Lecture Notes in Computer Science, vol. 4286, pp. 162–173. Springer, Berlin (2006)Google Scholar
  19. 19.
    Kostka, J., Oswald, Y.A., Wattenhofer, R.: Word of mouth: rumor dissemination in social networks. In: Proceedings of the 15th International Colloquium on Structural Information and Communication Complexity. SIROCCO ’08, pp. 185–196. Springer, Berlin (2008)Google Scholar
  20. 20.
    Apt, K., Markakis, E.: Diffusion in social networks with competing products. In: Persiano, G. (ed.) Algorithmic Game Theory. Volume 6982 of Lecture Notes in Computer Science, vol. 6982, pp. 212–223. Springer, Berlin (2011)Google Scholar
  21. 21.
    Borodin, A., Braverman, M., Lucier, B., Oren, J.: Truthful mechanisms for competing submodular processes. CoRR. arXiv:1202.2097 (2012)
  22. 22.
    Singer, Y.: How to win friends and influence people, truthfully: influence maximization mechanisms for social networks. In: WSDM, pp. 733–742 (2012)Google Scholar
  23. 23.
    Nemhauser, G.L., Wolsey, L.A., Fisher, M.L.: An analysis of approximations for maximizing submodular set functions-i. Math. Program. 14, 265–294 (1978). doi:10.1007/BF01588971 MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Rockafellar, R.T.: Convex Analysis (Princeton Landmarks in Mathematics and Physics). Princeton University Press, Princeton (1996)Google Scholar
  25. 25.
    Sviridenko, M.: A note on maximizing a submodular set function subject to a knapsack constraint. Oper. Res. Lett. 32, 41–43 (2004)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Kulik, A., Shachnai, H., Tamir, T.: Maximizing submodular set functions subject to multiple linear constraints. In: Proceedings of the Twentieth Annual ACM-SIAM Symposium on Discrete Algorithms. SODA ’09, pp. 545–554. Society for Industrial and Applied Mathematics, Philadelphia (2009)Google Scholar
  27. 27.
    Lu, P., Sun, X., Wang, Y., Zhu, Z.A.: Asymptotically optimal strategy-proof mechanisms for two-facility games. In: Proceedings of the 11th ACM Conference on Electronic commerce. EC ’10, pp. 315–324. ACM, New York (2010)Google Scholar
  28. 28.
    Ashlagi, I., Fischer, F., Kash, I., Procaccia, A.D.: Mix and match. In: Proceedings of the 11th ACM Conference on Electronic commerce. EC ’10, pp. 305–314. ACM, New York (2010)Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Allan Borodin
    • 1
  • Mark Braverman
    • 2
  • Brendan Lucier
    • 3
  • Joel Oren
    • 1
  1. 1.Department of Computer ScienceUniversity of TorontoTorontoCanada
  2. 2.Department of Computer SciencePrinceton UniversityPrincetonUSA
  3. 3.Microsoft ResearchCambridgeUSA

Personalised recommendations