Algorithmica

, Volume 78, Issue 1, pp 147–165 | Cite as

Approximating the Maximum Overlap of Polygons under Translation

Article
  • 138 Downloads

Abstract

Let \(P\) and \(Q\) be two simple polygons in the plane of total complexity n, each of which can be decomposed into at most k convex parts. We present a \((1-\varepsilon )\)-approximation algorithm, for finding the translation of \(Q\), which maximizes its area of overlap with \(P\). Our algorithm runs in \(O\left( {c n}\right) \) time, where c is a constant that depends only on k and \(\varepsilon \). This suggests that for polygons that are “close” to being convex, the problem can be solved (approximately), in near linear time.

Keywords

Approximation algorithms Computational geometry Polygon overlap 

References

  1. 1.
    Ahn, H.K., Cheng, S.W., Kweon, H.J., Yon, J.: Overlap of convex polytopes under rigid motion. Computat. Geom. Theory Appl. 47(1), 15–24 (2014). doi:10.1016/j.comgeo.2013.08.001 MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Ahn, H.K., Cheng, S.W., Reinbacher, I.: Maximum overlap of convex polytopes under translation. Computat. Geom. Theory Appl. 46(5), 552–565 (2013). doi:10.1016/j.comgeo.2011.11.003 MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Ahn, H.K., Cheong, O., Park, C.D., Shin, C.S., Vigneron, A.: Maximizing the overlap of two planar convex sets under rigid motions. Computat. Geom. Theory Appl. 37(1), 3–15 (2007)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Alt, H., Fuchs, U., Rote, G., Weber, G.: Matching convex shapes with respect to the symmetric difference. Algorithmica 21, 89–103 (1998). http://citeseer.nj.nec.com/267158.html
  5. 5.
    Alt, H., Guibas, L.J.: Discrete geometric shapes: matching, interpolation, and approximation. In: Sack, J.R., Urrutia, J. (eds.) Handbook of Computational Geometry, pp. 121–153. Elsevier, Amsterdam (2000)CrossRefGoogle Scholar
  6. 6.
    Avis, D., Bose, P., Toussaint, G.T., Shermer, T.C., Zhu, B., Snoeyink, J.: On the sectional area of convex polytopes. In: Proceedings of the 12th Annual Symposium on Computational Geometry SoCG, pp. 411–412 (1996)Google Scholar
  7. 7.
    Barequet, G., Har-Peled, S.: Efficiently approximating the minimum-volume bounding box of a point set in three dimensions. J. Algorithms 38, 91–109 (2001). http://cs.uiuc.edu/~sariel/research/papers/98/bbox.html
  8. 8.
    Barequet, G., Har-Peled, S.: Polygon containment and translational min-hausdorff-distance between segment sets are 3sum-hard. Int. J. Comput. Geom. Appl. 11(4), 465–474 (2001)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Brodal, G.S., Jacob, R.: Dynamic planar convex hull. In: Proceedings of the 43th Annual IEEE Symposium on Foundations of Computer Science FOCS, pp. 617–626 (2002)Google Scholar
  10. 10.
    Chazelle, B., Liu, D., Magen, A.: Sublinear geometric algorithms. SIAM J. Comput. 35(3), 627–646 (2005)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Cheng, S.W., Lam, C.K.: Shape matching under rigid motion. Comput. Geom. Theory Appl. 46(6), 591–603 (2013). doi:10.1016/j.comgeo.2013.01.002 MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Cheong, O., Efrat, A., Har-Peled, S.: On finding a guard that sees most and a shop that sells most. Discrete Comput. Geom. 37(4), 545–563 (2007)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    de Berg, M., Cabello, S., Giannopoulos, P., Knauer, C., van Oostrum, R., Veltkamp, R.C.: Maximizing the area of overlap of two unions of disks under rigid motion. In: Scandinavian Workshop on Algorithms. LNCS, vol. 3111, pp. 138–149 (2004)Google Scholar
  14. 14.
    de Berg, M., Cheong, O., Devillers, O., van Kreveld, M., Teillaud, M.: Computing the maximum overlap of two convex polygons under translations. Theor. Comput. Sci. 31, 613–628 (1998)Google Scholar
  15. 15.
    Gritzmann, P., Klee, V.: Inner and outer \(j\)-radii of convex bodies in finite-dimensional normed spaces. Discrete Comput. Geom. 7, 255–280 (1992)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Har-Peled, S.: Taking a walk in a planar arrangement. SIAM J. Comput. 30(4), 1341–1367 (2000)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Har-Peled, S.: Geometric approximation algorithms. In: Mathematical Surveys and Monographs, vol. 173. American Mathematical Society, Providence, RI (2011)Google Scholar
  18. 18.
    Har-Peled, S., Roy, S.: Approximating the maximum overlap of polygons under translation. In: Proceedings of the 22nd Annual European Symposium on Algorithms (ESA), pp. 542–553 (2014)Google Scholar
  19. 19.
    Har-Peled, S., Roy, S.: Approximating the Maximum Overlap of Polygons Under Translation. CoRR abs/1406.5778. http://arxiv.org/abs/1406.5778 (2014)
  20. 20.
    Keil, J.M., Snoeyink, J.: On the time bound for convex decomposition of simple polygons. Int. J. Comput. Geom. Appl. 12(3), 181–192 (2002)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Mount, D.M., Silverman, R., Wu, A.Y.: On the area of overlap of translated polygons. Comput. Vis. Image Underst. (CVIU) 64(1), 53–61 (1996). http://www.cs.umd.edu/~mount/Papers/overlap.ps
  22. 22.
    Sharir, M., Toledo, S.: Extremal polygon containment problems. Comput. Geom. Theory Appl. 4, 99–118 (1994)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Toussaint, G.T.: Solving geometric problems with the rotating calipers. In: Proceedings of the IEEE MELECON ’83, pp. A10.02/1–A10.02/4Google Scholar
  24. 24.
    Vigneron, A.: Geometric optimization and sums of algebraic functions. ACM Trans. Algorithms 10(1), 4 (2014). doi:10.1145/2532647 MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Computer ScienceUniversity of IllinoisUrbanaUSA

Personalised recommendations