, Volume 76, Issue 4, pp 1160–1180 | Cite as

Dynamic Algorithms for Multimachine Interval Scheduling Through Analysis of Idle Intervals

  • Alex Gavryushkin
  • Bakhadyr Khoussainov
  • Mikhail Kokho
  • Jiamou Liu


We study the dynamic scheduling problem for jobs with fixed start and end times on multiple machines. The problem is to design efficient data structures that support the update operations: insertions and deletions of jobs. Call the period of time in a schedule between two consecutive jobs in a given machine an idle interval. We show that for any set of jobs there exists a schedule such that the corresponding set of idle intervals forms a tree under the set-theoretic inclusion. We prove that any such schedule is optimal. Based on this result, we provide a data structure that maintains the updates the optimal schedule in \(O(d+\log n)\) worst-case time, where d is the depth of the set of idle intervals and n is the number of jobs. Furthermore, we show this bound is tight.


Interval scheduling Fixed job scheduling Idle intervals 


  1. 1.
    Arkin, E.M., Silverberg, E.B.: Scheduling jobs with fixed start and end times. Discrete Appl.Math. 18(1), 1–8 (1987)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Diedrich, F., Jansen, K., Pradel, L., Schwarz, U.M., Svensson, O.: Tight approximation algorithms for scheduling with fixed jobs and nonavailability. ACM Trans. Algorithms 8(3), 27 (2012)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Gavruskin, A., Khoussainov, B., Kokho, M., Liu, J.: Dynamising Interval Scheduling: The Monotonic Case. Combinatorial Algorithms. Springer, Berlin (2013)MATHGoogle Scholar
  4. 4.
    Gertsbakh, I., Stern, H.I.: Minimal resources for fixed and variable job schedules. Oper. Res. 26(1), 68–85 (1978)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Gupta, U.I., Lee, D.T., Leung, J.T.: An optimal solution for the channel-assignment problem. IEEE Trans. Comput. 100(11), 807–810 (1979)CrossRefMATHGoogle Scholar
  6. 6.
    Kaplan, H., Molad, E., Tarjan, R.E.: Dynamic rectangular intersection with priorities. In: Proceedings of the Thirty-Fifth Annual ACM Symposium on Theory of Computing, pp. 639–648. ACM (2003)Google Scholar
  7. 7.
    Kharlampovich, O., Khoussainov, B., Miasnikov, A.: From automatic structures to automatic groups. arXiv preprint arXiv:1107.3645 (2011)
  8. 8.
    Khoussainov, B., Nerode, A.: Open Questions in the Theory of Automatic Structures. Bull. EATCS, 94, 181–204 (2008)Google Scholar
  9. 9.
    Kleinberg, J., Tardos, E.: Algorithm Design. Pearson Education India (2006)Google Scholar
  10. 10.
    Kolen, A.W., Kroon, L.G.: On the computational complexity of (maximum) class scheduling. Eur. J. Oper. Res. 54(1), 23–38 (1991)CrossRefMATHGoogle Scholar
  11. 11.
    Kolen, A.W., Kroon, L.G.: An analysis of shift class design problems. Eur. J. Oper. Res. 79(3), 417–430 (1994)CrossRefMATHGoogle Scholar
  12. 12.
    Kolen, A.W., Lenstra, J.K., Papadimitriou, C.H., Spieksma, F.C.: Interval scheduling: a survey. Nav. Res. Logist. 54(5), 530–543 (2007)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Kovalyov, M.Y., Ng, C.T., Cheng, T.C.: Fixed interval scheduling: models, applications, computational complexity and algorithms. Eur. J. Oper. Res 178(2), 331–342 (2007)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Kroon, L.G., Salomon, M., Van Wassenhove, L.N.: Exact and approximation algorithms for the operational fixed interval scheduling problem. Eur. J. Oper. Res. 82(1), 190–205 (1995)CrossRefMATHGoogle Scholar
  15. 15.
    Kroon, L.G., Salomon, M., Van Wassenhove, L.N.: Exact and approximation algorithms for the tactical fixed interval scheduling problem. Oper. Res. 45(4), 624–638 (1997)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Mehlhorn, K.: Data Structures and Algorithms, Multi-dimensional Searching and Computational Geometry, vol. 3. Springer, Berlin (1984)MATHGoogle Scholar
  17. 17.
    Shamos, M. I., & Hoey, D.: Geometric intersection problems. In: 17th Annual Symposium on Foundations of Computer Science, 1976, pp. 208–215. IEEE (1976)Google Scholar
  18. 18.
    Sleator, D., Tarjan, R.: A data structure for dynamic trees. J. Comput. Syst. Sci. 26(3), 362–391 (1983)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Spieksma, F.C.: On the approximability of an interval scheduling problem. J. Sched. 2(5), 215–227 (1999)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Alex Gavryushkin
    • 1
  • Bakhadyr Khoussainov
    • 1
  • Mikhail Kokho
    • 1
  • Jiamou Liu
    • 2
  1. 1.Centre for Computational EvolutionThe University of AucklandAucklandNew Zealand
  2. 2.Department of Computer ScienceThe University of AucklandAucklandNew Zealand

Personalised recommendations