, Volume 77, Issue 4, pp 1071–1104 | Cite as

Extending Partial Representations of Proper and Unit Interval Graphs

  • Pavel Klavík
  • Jan Kratochvíl
  • Yota Otachi
  • Ignaz Rutter
  • Toshiki Saitoh
  • Maria Saumell
  • Tomáš Vyskočil


The recently introduced problem of extending partial interval representations asks, for an interval graph with some intervals pre-drawn by the input, whether the partial representation can be extended to a representation of the entire graph. In this paper, we give a linear-time algorithm for extending proper interval representations and an almost quadratic-time algorithm for extending unit interval representations. We also introduce the more general problem of bounded representations of unit interval graphs, where the input constrains the positions of some intervals by lower and upper bounds. We show that this problem is NP-complete for disconnected input graphs and give a polynomial-time algorithm for the special class of instances, where the ordering of the connected components of the input graph along the real line is prescribed. This includes the case of partial representation extension. The hardness result sharply contrasts the recent polynomial-time algorithm for bounded representations of proper interval graphs (Balko et al. in 2013). So unless \({\textsf {P}} = {\textsf {NP}}\), proper and unit interval representations have vastly different structure. This explains why partial representation extension problems for these different types of representations require substantially different techniques.


Intersection representation Partial representation extension Bounded representations Restricted representation Proper interval graph Unit interval graph  Linear programming 


  1. 1.
    Angelini, P., Battista, G.D., Frati, F., Jelínek, V., Kratochvíl, J., Patrignani, M., Rutter, I.: Testing planarity of partially embedded graphs. ACM Trans. Algorithms 11(4), 32:1–32:42 (2015)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Balko, M., Klavík, P., Otachi, Y.: Bounded representations of interval and proper interval graphs. In: Algorithms and Computation—24th International Symposium, ISAAC 2013, Lecture Notes in Computer Science, vol. 8283, pp. 535–546. Springer, Berlin (2013)Google Scholar
  3. 3.
    Balof, B., Doignon, J.P., Fiorini, S.: The representation polyhedron of a semiorder. Order 30(1), 103–135 (2013)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Bang-Jensen, J., Huang, J., Zhu, X.: Completing Orientations of Partially Oriented Graphs. CoRR (2015). arXiv:1509.01301
  5. 5.
    Bläsius, T., Rutter, I.: Simultaneous PQ-ordering with applications to constrained embedding problems. In: SODA’13: Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1030–1043 (2013)Google Scholar
  6. 6.
    Booth, K.S., Lueker, G.S.: Testing for the consecutive ones property, interval graphs, and planarity using PQ-tree algorithms. J. Comput. Syst. Sci. 13, 335–379 (1976)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Chaplick, S., Dorbec, P., Kratochvíl, J., Montassier, M., Stacho, J.: Contact representations of planar graphs: extending a partial representation is hard. In: Graph-Theoretic Concepts in Computer Science—40th International Workshop, WG 2014, Lecture Notes in Computer Science, vol. 8747, pp. 139–151. Springer, Berlin (2014)Google Scholar
  8. 8.
    Chaplick, S., Fulek, R., Klavík, P.: Extending partial representations of circle graphs. In: Graph Drawing—21st International Symposium, GD 2013, Lecture Notes in Computer Science, vol. 8242, pp. 131–142. Springer, Berlin (2013)Google Scholar
  9. 9.
    Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 3rd edn. MIT Press, Cambridge (2009)MATHGoogle Scholar
  10. 10.
    Corneil, D.G., Kim, H., Natarajan, S., Olariu, S., Sprague, A.P.: Simple linear time recognition of unit interval graphs. Inf. Process. Lett. 55(2), 99–104 (1995)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Corneil, D.G., Olariu, S., Stewart, L.: The LBFS structure and recognition of interval graphs. SIAM J. Discret. Math. 23(4), 1905–1953 (2009)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Deng, X., Hell, P., Huang, J.: Linear-time representation algorithms for proper circular-arc graphs and proper interval graphs. SIAM J. Comput. 25(2), 390–403 (1996)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Durán, G., Fernández Slezak, F., Grippo, L.N., Oliveira, F.d.S., Szwarcfiter, J.: On unit interval graphs with integer endpoints. In: LAGOS 2015 (2015).
  14. 14.
    Fürer, M.: Faster integer multiplication. SIAM J. Comput. 39(3), 979–1005 (2009)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Garey, M.R., Johnson, D.S.: Complexity results for multiprocessor scheduling under resource constraints. SIAM J. Comput. 4(4), 397–411 (1975)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Gilmore, P.C., Hoffman, A.J.: A characterization of comparability graphs and of interval graphs. Can. J. Math. 16, 539–548 (1964)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs. North-Holland, Amsterdam (2004)MATHGoogle Scholar
  18. 18.
    Hajós, G.: Über eine Art von Graphen. Int. Math. Nachr. 11, 65 (1957)Google Scholar
  19. 19.
    Jampani, K.R., Lubiw, A.: Simultaneous interval graphs. In: Algorithms and Computation—21st International Symposium, ISAAC 2010, Lecture Notes in Computer Science, vol. 6506, pp. 206–217. Springer, Berlin (2010)Google Scholar
  20. 20.
    Jampani, K.R., Lubiw, A.: The simultaneous representation problem for chordal, comparability and permutation graphs. J. Graph Algorithms Appl. 16(2), 283–315 (2012)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Karmarkar, N.: A new polynomial-time algorithm for linear programming. Combinatorica 4(4), 373–395 (1984)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Klavík, P., Kratochvíl, J., Krawczyk, T., Walczak, B.: Extending partial representations of function graphs and permutation graphs. In: Algorithms—20th Annual European Symposium, ESA 2012, Lecture Notes in Computer Science, vol. 7501, pp. 671–682. Springer, Berlin (2012)Google Scholar
  23. 23.
    Klavík, P., Kratochvíl, J., Otachi, Y., Rutter, I., Saitoh, T., Saumell, M., Vyskočil, T.: Extending partial representations of proper and unit interval graphs. In: Algorithm Theory—14th Scandinavian Symposium and Workshops, SWAT 2014, Lecture Notes in Computer Science, vol. 8503, pp. 253–264. Springer, Berlin (2014)Google Scholar
  24. 24.
    Klavík, P., Kratochvíl, J., Otachi, Y., Saitoh, T.: Extending partial representations of subclasses of chordal graphs. Theor. Comput. Sci. 576, 85–101 (2015)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Klavík, P., Kratochvíl, J., Otachi, Y., Saitoh, T., Vyskocil, T.: Extending partial representations of interval graphs. CoRR (2013). arXiv:1306.2182
  26. 26.
    Klavík, P., Kratochvíl, J., Vyskočil, T.: Extending partial representations of interval graphs. In: Theory and Applications of Models of Computation—8th Annual Conference, TAMC 2011, Lecture Notes in Computer Science, vol. 6648, pp. 276–285. Springer, Berlin (2011)Google Scholar
  27. 27.
    Klavík, P., Otachi, Y., Šejnoha, J.: On the classes of interval graphs of limited nesting and count of lengths. CoRR (2015). arXiv:1510.03998
  28. 28.
    Klavík, P., Saumell, M.: Minimal obstructions for partial representations of interval graphs. In: Algorithms and Computation—25th International Symposium, ISAAC 2014, Lecture Notes in Computer Science, vol. 8889, pp. 401–413. Springer, Berlin (2014)Google Scholar
  29. 29.
    Patrignani, M.: On extending a partial straight-line drawing. Int. J. Found. Comput. Sci. 17(5), 1061–1070 (2006)MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Pirlot, M.: Minimal representation of a semiorder. Theory Decis. 28, 109–141 (1990)MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    Pirlot, M.: Synthetic description of a semiorder. Discret. Appl. Math. 31(3), 299–308 (1991)MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Roberts, F.S.: Representations of Indifference Relations. Ph.D. Thesis, Stanford University (1968)Google Scholar
  33. 33.
    Roberts, F.S.: Indifference graphs. In: Harary, F. (ed.) Proof Techniques in Graph Theory, pp. 139–146. Academic Press, London (1969)Google Scholar
  34. 34.
    Rose, D.J., Tarjan, R.E., Lueker, G.S.: Algorithmic aspects of vertex elimination on graphs. SIAM J. Comput. 5(2), 266–283 (1976)MathSciNetCrossRefMATHGoogle Scholar
  35. 35.
    Soulignac, F.J.: Bounded, minimal, and short representations of unit interval and unit circular-arc graphs. CoRR (2014). arXiv:1408.3443
  36. 36.
    Spinrad, J.P.: Efficient Graph Representations. Field Institute Monographs (2003)Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Pavel Klavík
    • 1
  • Jan Kratochvíl
    • 2
  • Yota Otachi
    • 3
  • Ignaz Rutter
    • 2
    • 4
  • Toshiki Saitoh
    • 5
  • Maria Saumell
    • 6
  • Tomáš Vyskočil
    • 7
  1. 1.Computer Science InstituteCharles University in PraguePragueCzech Republic
  2. 2.Department of Applied Mathematics, Faculty of Mathematics and PhysicsCharles University in PraguePragueCzech Republic
  3. 3.School of Information ScienceJapan Advanced Institute of Science and TechnologyNomiJapan
  4. 4.Faculty of InformaticsKarlsruhe Institute of TechnologyKarlsruheGermany
  5. 5.Graduate School of EngineeringKobe UniversityNadaJapan
  6. 6.Department of Mathematics and European Centre of Excellence NTIS (New Technologies for the Information Society)University of West BohemiaPlzeňCzech Republic
  7. 7.Department of Computer ScienceRutgers, The State University of New JerseyPiscatawayUSA

Personalised recommendations