, Volume 77, Issue 4, pp 1022–1059 | Cite as

Strip Planarity Testing for Embedded Planar Graphs

  • Patrizio Angelini
  • Giordano Da Lozzo
  • Giuseppe Di Battista
  • Fabrizio Frati


In this paper we introduce and study the strip planarity testing problem, which takes as an input a planar graph G(VE) and a function \(\gamma :V \rightarrow \{1,2,\dots ,k\}\) and asks whether a planar drawing of G exists such that each edge is represented by a curve that is monotone in the y-direction and, for any \(u,v\in V\) with \(\gamma (u)<\gamma (v)\), it holds that \(y(u)<y(v)\). The problem has strong relationships with some of the most deeply studied variants of the planarity testing problem, such as clustered planarity, upward planarity, and level planarity. Most notably, we provide a polynomial-time reduction from strip planarity testing to clustered planarity. We show that the strip planarity testing problem is polynomial-time solvable if G has a prescribed combinatorial embedding.


Planarity Clustered planarity Upward planarity  Level planarity Embedded graphs 


  1. 1.
    Abbasi, S., Healy, P., Rextin, A.: Improving the running time of embedded upward planarity testing. Inf. Process. Lett. 110(7), 274–278 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Aloupis, G., Barba, L., Carmi, P., Dujmovic, V., Frati, F., Morin, P.: Compatible connectivity-augmentation of planar disconnected graphs. In: Indyk, P. (ed.) Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium Discrete Algorithms (SODA ’15), pp. 1602–1615. SIAM, San Diego, CA (2015). doi: 10.1137/1.9781611973730.106
  3. 3.
    Angelini, P., Di Battista, G., Frati, F., Jelínek, V., Kratochvíl, J., Patrignani, M., Rutter, I.: Testing planarity of partially embedded graphs. In: Charikar, M. (ed.) ACM-SIAM Symposium on Discrete Algorithms (SODA ’10). pp. 202–221 (2010)Google Scholar
  4. 4.
    Angelini, P., Frati, F., Kaufmann, M.: Straight-line rectangular drawings of clustered graphs. Discrete Comput. Geom. 45(1), 88–140 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Angelini, P., Da Lozzo, G., Di Battista, G., Frati, F., Roselli, V.: The importance of being proper (in clustered-level planarity and t-level planarity). Theor. Comput. Sci. 571, 1–9 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Bachmaier, C., Brandenburg, F.J., Forster, M.: Radial level planarity testing and embedding in linear time. J. Graph Algorithms Appl. 9(1), 53–97 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Bertolazzi, P., Di Battista, G., Liotta, G., Mannino, C.: Upward drawings of triconnected digraphs. Algorithmica 12(6), 476–497 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Booth, K.S., Lueker, G.S.: Testing for the consecutive ones property, interval graphs, and graph planarity using PQ-tree algorithms. J. Comput. Syst. Sci. 13(3), 335–379 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Chambers, E.W., Eppstein, D., Goodrich, M.T., Löffler, M.: Drawing graphs in the plane with a prescribed outer face and polynomial area. J. Graph Algorithms Appl. 16(2), 243–259 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Chiba, N., Yamanouchi, T., Nishizeki, T.: Linear algorithms for convex drawings of planar graphs. In: Bondy, J.A., Murty, U.S.R. (eds.) Progress in Graph Theory, pp. 153–173. Academic Press, New York, NY (1984)Google Scholar
  11. 11.
    Chimani, M., Di Battista, G., Frati, F., Klein, K.: Advances on testing c-planarity of embedded flat clustered graphs. In: Duncan, C.A., Symvonis, A. (eds.) Graph Drawing (GD ’14). LNCS, vol. 8871, pp. 416–427. Springer, Berlin (2014)Google Scholar
  12. 12.
    Cortese, P.F., Di Battista, G., Patrignani, M., Pizzonia, M.: Clustering cycles into cycles of clusters. J. Graph Algorithms Appl. 9(3), 391–413 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Cortese, P.F., Di Battista, G., Patrignani, M., Pizzonia, M.: On embedding a cycle in a plane graph. Discrete Math. 309(7), 1856–1869 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Di Battista, G., Frati, F.: Efficient c-planarity testing for embedded flat clustered graphs with small faces. J. Graph Algorithms Appl. 13(3), 349–378 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Di Battista, G., Tamassia, R.: Algorithms for plane representations of acyclic digraphs. Theor. Comput. Sci. 61, 175–198 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Didimo, W., Giordano, F., Liotta, G.: Upward spirality and upward planarity testing. SIAM J. Discrete Math. 23(4), 1842–1899 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Eades, P., Feng, Q., Lin, X., Nagamochi, H.: Straight-line drawing algorithms for hierarchical graphs and clustered graphs. Algorithmica 44(1), 1–32 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Estrella-Balderrama, A., Fowler, J.J., Kobourov, S.G.: On the characterization of level planar trees by minimal patterns. In: Eppstein, D., Gansner, E.R. (eds.) GD’09. LNCS, vol. 5849, pp. 69–80 (2010)Google Scholar
  19. 19.
    Feng, Q., Cohen, R.F., Eades, P.: Planarity for clustered graphs. In: Spirakis (ed.) European Symposium on Algorithms (ESA ’95). LNCS, vol. 979, pp. 213–226 (1995)Google Scholar
  20. 20.
    Forster, M., Bachmaier, C.: Clustered level planarity. In: van Emde Boas, P., Pokorný, J., Bieliková, M., Stuller, J. (eds.) SOFSEM ’04. LNCS, vol. 2932, pp. 218–228 (2004)Google Scholar
  21. 21.
    Fowler, J.J., Kobourov, S.G.: Minimum level nonplanar patterns for trees. In: Hong, S.H., Nishizeki, T., Quan, W. (eds.) GD’07. LNCS, vol. 4875, pp. 69–75 (2008)Google Scholar
  22. 22.
    Fulek, R.: Toward the Hanani-Tutte theorem for clustered graphs. CoRR abs/1410.3022 (2014).
  23. 23.
    Garg, A., Tamassia, R.: On the computational complexity of upward and rectilinear planarity testing. SIAM J. Comput. 31(2), 601–625 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Gutwenger, C., Klein, K., Mutzel, P.: Planarity testing and optimal edge insertion with embedding constraints. J. Graph Algorithms Appl. 12(1), 73–95 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Healy, P., Kuusik, A., Leipert, S.: A characterization of level planar graphs. Discrete Math. 280(1–3), 51–63 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Hopcroft, J.E., Tarjan, R.E.: Efficient planarity testing. J. ACM 21(4), 549–568 (1974)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Hutton, M.D., Lubiw, A.: Upward planarity testing of single-source acyclic digraphs. SIAM J. Comput. 25(2), 291–311 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Jelínek, V., Jelínková, E., Kratochvíl, J., Lidický, B.: Clustered planarity: Embedded clustered graphs with two-component clusters. In: GD ’08. LNCS, vol. 5417, pp. 121–132 (2009)Google Scholar
  29. 29.
    Jelínek, V., Kratochvíl, J., Rutter, I.: A Kuratowski-type theorem for planarity of partially embedded graphs. Comput. Geom. 46(4), 466–492 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Jelínková, E., Kára, J., Kratochvíl, J., Pergel, M., Suchý, O., Vyskocil, T.: Clustered planarity: small clusters in cycles and Eulerian graphs. J. Graph Algorithms Appl. 13(3), 379–422 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Jünger, M., Leipert, S., Mutzel, P.: Level planarity testing in linear time. In: Whitesides, S. (ed.) GD ’98. LNCS, vol. 1547, pp. 224–237 (1998)Google Scholar
  32. 32.
    Kowalik, L., Kurowski, M.: Short path queries in planar graphs in constant time. In: Larmore, L.L., Goemans, M.X. (eds.) Symposium on Theory of Computing. pp. 143–148. ACM, New York (2003)Google Scholar
  33. 33.
    Pach, J., Toth, G.: Monotone drawings of planar graphs. CoRR abs/1101.0967 (2011).
  34. 34.
    Schaefer, M.: Toward a theory of planarity: Hanani–Tutte and planarity variants. J. Graph Algorithms Appl. 17(4), 367–440 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Sugiyama, K., Tagawa, S., Toda, M.: Methods for visual understanding of hierarchical system structures. IEEE Trans. Syst. Man Cybern. 11(2), 109–125 (1981)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Tamassia, R.: On embedding a graph in the grid with the minimum number of bends. SIAM J. Comput. 16(3), 421–444 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Tamassia, R. (ed.): Handbook of Graph Drawing and Visualization. Discrete Mathematics and Its Applications. CRC Press, Boca Raton, FL (2013)Google Scholar
  38. 38.
    Tarjan, R.E.: Depth first search and linear graph algorithms. SIAM J. Comput. 2, 146–160 (1972)MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Whitney, H.: 2-Isomorphic graphs. Am. J. Math. 55(1), 245–254 (1933)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Wilhelm-Schickard-Institut für InformatikTübingen UniversityTübingenGermany
  2. 2.Department of EngineeringRoma Tre UniversityRomeItaly

Personalised recommendations