Algorithmica

, Volume 74, Issue 2, pp 812–850 | Cite as

The Two-Handed Tile Assembly Model is not Intrinsically Universal

  • Erik D. Demaine
  • Matthew J. Patitz
  • Trent A. Rogers
  • Robert T. Schweller
  • Scott M. Summers
  • Damien Woods
Article

Abstract

The Two-Handed Tile Assembly Model (2HAM) is a model of algorithmic self-assembly in which large structures, or assemblies of tiles, are grown by the binding of smaller assemblies. In order to bind, two assemblies must have matching glues that can simultaneously touch each other, and stick together with strength that is at least the temperature \(\tau \), where \(\tau \) is some fixed positive integer. We ask whether the 2HAM is intrinsically universal. In other words, we ask: is there a single 2HAM tile set \(U\) which can be used to simulate any instance of the model? Our main result is a negative answer to this question. We show that for all \(\tau ' < \tau \), each temperature-\(\tau '\) 2HAM tile system does not simulate at least one temperature-\(\tau \) 2HAM tile system. This impossibility result proves that the 2HAM is not intrinsically universal and stands in contrast to the fact that the (single-tile addition) abstract Tile Assembly Model is intrinsically universal. On the positive side, we prove that, for every fixed temperature \(\tau \ge 2\), temperature-\(\tau \) 2HAM tile systems are indeed intrinsically universal. In other words, for each \(\tau \) there is a single intrinsically universal 2HAM tile set \(U_{\tau }\) that, when appropriately initialized, is capable of simulating the behavior of any temperature-\(\tau \) 2HAM tile system. As a corollary, we find an infinite set of infinite hierarchies of 2HAM systems with strictly increasing simulation power within each hierarchy. Finally, we show that for each \(\tau \), there is a temperature-\(\tau \) 2HAM system that simultaneously simulates all temperature-\(\tau \) 2HAM systems.

Keywords

Tile-assembly Intrinsic universality 2HAM Tile assembly model 

References

  1. 1.
    Adleman, L.M., Cheng, Q., Goel, A., Huang, M.D.A., Kempe, D., de Espanés, P.M., Rothemund, P.W.K.: Combinatorial optimization problems in self-assembly. In: Proceedings of the Thirty-Fourth Annual ACM Symposium on Theory of Computing, pp. 23–32 (2002)Google Scholar
  2. 2.
    Arrighi, P., Schabanel, N., Theyssier, G.: Intrinsic simulations between stochastic cellular automata. In: Automata & JAC: Proceedings of the 18th International Workshop on Cellular Automata and Discrete Complex Systems and the 3rd International Symposium Journées Automates Cellulaires, EPTCS, vol. 90, pp. 208–224 (2012). Arxiv preprint: arXiv:1208.2763
  3. 3.
    Barish, R.D., Rothemund, P.W., Winfree, E.: Two computational primitives for algorithmic self-assembly: copying and counting. Nano Lett. 5(12), 2586–2592 (2005)CrossRefGoogle Scholar
  4. 4.
    Barish, R.D., Schulman, R., Rothemund, P.W., Winfree, E.: An information-bearing seed for nucleating algorithmic self-assembly. Proc. Natl. Acad. Sci 106(15), 6054–6059 (2009)CrossRefGoogle Scholar
  5. 5.
    Cannon, S., Demaine, E.D., Demaine, M.L., Eisenstat, S., Patitz, M.J., Schweller, R., Summers, S.M., Winslow, A.: Two hands are better than one (up to constant factors). In: STACS: Proceedings of the Thirtieth International Symposium on Theoretical Aspects of Computer Science, pp. 172–184 (2013). Arxiv preprint: arXiv:1201.1650
  6. 6.
    Goles, E., Meunier, P.E., Rapaport, I., Theyssier, G.: Communication complexity and intrinsic universality in cellular automata. Theor. Comput. Sci. 412(1—-2), 2–21 (2011)CrossRefMathSciNetMATHGoogle Scholar
  7. 7.
    Chen, H.L., Doty, D.: Parallelism and time in hierarchical self-assembly. In: Proceedings of the 23rd Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1163–1182. Society for Industrial and Applied Mathematics (2012)Google Scholar
  8. 8.
    Cheng, Q., Aggarwal, G., Goldwasser, M.H., Kao, M.Y., Schweller, R.T., de Espanés, P.M.: Complexities for generalized models of self-assembly. SIAM J. Comput. 34, 1493–1515 (2005)CrossRefMathSciNetMATHGoogle Scholar
  9. 9.
    Cook, M., Fu, Y., Schweller, R.T.: Temperature 1 self-assembly: deterministic assembly in 3D and probabilistic assembly in 2D. In: Proceedings of the 22nd Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 570–589. Society for Industrial and Applied Mathematics (2011)Google Scholar
  10. 10.
    Delorme, M., Mazoyer, J., Ollinger, N., Theyssier, G.: Bulking I: an abstract theory of bulking. Theor. Comput. Sci. 412(30), 3866–3880 (2011)CrossRefMathSciNetMATHGoogle Scholar
  11. 11.
    Delorme, M., Mazoyer, J., Ollinger, N., Theyssier, G.: Bulking II: classifications of cellular automata. Theor. Comput. Sci. 412(30), 3881–3905 (2011)CrossRefMathSciNetMATHGoogle Scholar
  12. 12.
    Demaine, E.D., Demaine, M.L., Fekete, S.P., Ishaque, M., Rafalin, E., Schweller, R.T., Souvaine, D.L.: Staged self-assembly: nanomanufacture of arbitrary shapes with \({O}(1)\) glues. Nat. Comput. 7(3), 347–370 (2008)CrossRefMathSciNetMATHGoogle Scholar
  13. 13.
    Demaine, E.D., Demaine, M.L., Fekete, S.P., Patitz, M.J., Schweller, R.T., Winslow, A., Woods, D.: One tile to rule them all: simulating any Turing machine, tile assembly system, or tiling system with a single puzzle piece. In: ICALP: Proceedings of the 41st International Colloquium on Automata, Languages, and Programming, LNCS, vol. 8572, pp. 368–379. Springer (2014). Arxiv preprint: arXiv:1212.4756
  14. 14.
    Demaine, E.D., Patitz, M.J., Rogers, T.A., Schweller, R.T., Summers, S.M., Woods, D.: The two-handed assembly model is not intrinsically universal. Tech. rep., Computing Research Repository (2013). arXiv:1306.6710 [cs.CG]
  15. 15.
    Doty, D., Lutz, J.H., Patitz, M.J., Schweller, R.T., Summers, S.M., Woods, D.: The tile assembly model is intrinsically universal. In: FOCS: Proceedings of the 53rd Annual IEEE Symposium on Foundations of Computer Science, pp. 439–446 (2012). Arxiv preprint: arXiv:1111.3097
  16. 16.
    Doty, D., Lutz, J.H., Patitz, M.J., Summers, S.M., Woods, D.: Intrinsic universality in self-assembly. In: STACS: Proceedings of the 27th International Symposium on Theoretical Aspects of Computer Science, pp. 275–286 (2009). Arxiv preprint: arXiv:1001.0208
  17. 17.
    Doty, D., Patitz, M.J., Reishus, D., Schweller, R.T., Summers, S.M.: Strong fault-tolerance for self-assembly with fuzzy temperature. In: Proceedings of the 51st Annual IEEE Symposium on Foundations of Computer Science (FOCS 2010), pp. 417–426 (2010)Google Scholar
  18. 18.
    Durand, B., Róka, Z.: The game of life: universality revisited. In: Delorme, M., Mazoyer, J. (eds.) Cellular Automata. Kluwer, Dordrecht (1999)Google Scholar
  19. 19.
    Evans, C.G.: Crystals that count! Physical principles and experimental investigations of DNA tile self-assembly. Ph.D. thesis, California Institute of Technology (2014)Google Scholar
  20. 20.
    Fujibayashi, K., Hariadi, R., Park, S.H., Winfree, E., Murata, S.: Toward reliable algorithmic self-assembly of DNA tiles: a fixed-width cellular automaton pattern. Nano Lett. 8(7), 1791–1797 (2007)CrossRefGoogle Scholar
  21. 21.
    Hendricks, J., Patitz, M.J., Rogers, T.A.: Doubles and negatives are positive (in self-assembly). In: UCNC: Proceeding of Unconventional Computation and Natural Computation, LNCS, vol. 8553, pp. 190–202. Springer (2014)Google Scholar
  22. 22.
    Lafitte, G., Weiss, M.: Universal tilings. In: Thomas, W., Weil, P. (eds.) STACS 2007, 24th Annual Symposium on Theoretical Aspects of Computer Science, Aachen, Germany, February 22–24, 2007, Proceedings, Lecture Notes in Computer Science, vol. 4393, pp. 367–380. Springer (2007). http://dx.doi.org/10.1007/978-3-540-70918-3_32
  23. 23.
    Lafitte, G., Weiss, M.: Simulations between tilings. In: Conference on Computability in Europe, Local Proceedings, pp. 264–273 (2008)Google Scholar
  24. 24.
    Lafitte, G., Weiss, M.: An almost totally universal tile set. In: Chen, J., Cooper, S.B. (eds.) Theory and Applications of Models of Computation, 6th Annual Conference, TAMC 2009, Changsha, China, May 18–22, 2009. Proceedings, Lecture Notes in Computer Science, vol. 5532, pp. 271–280. Springer (2009). http://dx.doi.org/10.1007/978-3-642-02017-9
  25. 25.
    Lathrop, J.I., Lutz, J.H., Summers, S.M.: Strict self-assembly of discrete Sierpinski triangles. Theor. Comput. Sci. 410, 384–405 (2009)CrossRefMathSciNetMATHGoogle Scholar
  26. 26.
    Luhrs, C.: Polyomino-safe DNA self-assembly via block replacement. In: Goel, A., Simmel, F.C., Sosík, P. (eds.) DNA14, Lecture Notes in Computer Science, vol. 5347, pp. 112–126. Springer (2008). doi:10.1007/978-3-642-03076-5
  27. 27.
    Meunier, P.E., Patitz, M.J., Summers, S.M., Theyssier, G., Winslow, A., Woods, D.: Intrinsic universality in tile self-assembly requires cooperation. In: SODA: ACM-SIAM Symposium on Discrete Algorithms, pp. 752–771, Portland, OR, USA, January 5–7, 2014. Society for Industrial and Applied Mathematics (2014). Arxiv preprint: arXiv:1304.1679
  28. 28.
    Ollinger, N.: Intrinsically universal cellular automata. In: The Complexity of Simple Programs, in Electronic Proceedings in Theoretical Computer Science, vol. 1, pp. 199–204 (2008)Google Scholar
  29. 29.
    Ollinger, N., Richard, G.: Four states are enough!. Theor. Comput. Sci. 412(1), 22–32 (2011)CrossRefMathSciNetMATHGoogle Scholar
  30. 30.
    Rothemund, P.: Folding DNA to create nanoscale shapes and patterns. Nature 440(7082), 297–302 (2006)CrossRefGoogle Scholar
  31. 31.
    Rothemund, P.W., Papadakis, N., Winfree, E.: Algorithmic self-assembly of DNA Sierpinski triangles. PLoS Biol. 2(12), 2041–2053 (2004)CrossRefGoogle Scholar
  32. 32.
    Rothemund, P.W.K.: Theory and experiments in algorithmic self-assembly. Ph.D. thesis, University of Southern California (2001)Google Scholar
  33. 33.
    Seeman, N.C.: Nucleic-acid junctions and lattices. J. Theor. Biol. 99, 237–247 (1982)CrossRefGoogle Scholar
  34. 34.
    Wang, H.: Proving theorems by pattern recognition—II. Bell Syst. Tech. J. XL(1), 1–41 (1961)CrossRefGoogle Scholar
  35. 35.
    Winfree, E.: Algorithmic self-assembly of DNA. Ph.D. thesis, California Institute of Technology (1998)Google Scholar
  36. 36.
    Winfree, E., Liu, F., Wenzler, L.A., Seeman, N.C.: Design and self-assembly of two-dimensional DNA crystals. Nature 394(6693), 539–44 (1998)CrossRefGoogle Scholar
  37. 37.
    Woods, D.: Intrinsic universality and the computational power of self-assembly. In: MCU: Proceedings of Machines, Computations and Universality, Electronic Proceedings in Theoretical Computer Science, vol. 128, pp. 16–22. Open Publishing Association, Univ. of Zürich, Switzerland, Sept. 9–12 (2013). doi:10.4204/EPTCS.128.5

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Erik D. Demaine
    • 1
  • Matthew J. Patitz
    • 2
  • Trent A. Rogers
    • 2
  • Robert T. Schweller
    • 3
  • Scott M. Summers
    • 4
  • Damien Woods
    • 5
  1. 1.Computer Science and Artificial Intelligence LaboratoryMassachusetts Institute of TechnologyCambridgeUSA
  2. 2.Department of Computer Science and Computer EngineeringUniversity of ArkansasFayettevilleUSA
  3. 3.Department of Computer ScienceUniversity of Texas–Pan AmericanEdinburgUSA
  4. 4.Department of Computer ScienceUniversity of Wisconsin–OshkoshOshkoshUSA
  5. 5.Computer Science, California Institute of TechnologyPasadenaUSA

Personalised recommendations