Abstract
We study the problem of finding a spanning tree with maximum number of leaves. We present a simple, linear time 2-approximation algorithm for this problem, improving on the previous best known algorithm for the problem, which has approximation ratio 3.
Similar content being viewed by others
References
Alon, N., Fomin, F.V., Gutin, G., Krivelevich, M., Saurabh, S.: Spanning directed trees with many leaves. SIAM J. Discret. Math. 23(1), 466–476 (2009)
Binkele-Raible, D., Fernau, H.: An exact exponential-time algorithm for the directed maximum leaf spanning tree problem. J. Discret. Algorithms 15, 43–55 (2012)
Binkele-Raible, D., Fernau, H., Fomin, F.V., Lokshtanov, D., Saurabh, S., Villanger, Y.: Kernel(s) for problems with no kernel: on out-trees with many leaves. ACM Trans. Algorithms 8(4) (2012) (Article 38)
Bodlaender, H.L.: On linear time minor tests with depth-first search. J. Algorithms 14(1), 1–23 (1993)
Bonsma, P.: Max-leaves spanning tree is APX-hard for cubic graphs. J. Discret. Algorithms 12, 14–23 (2012)
Bonsma, P., Brueggemann, T., Woeginger, G.J.: A faster FPT algorithm for finding spanning trees with many leaves. In: Mathematical Foundations of Computer Science (MFCS 2003). Volume 2747 of Lecture Notes in Computer Science, pp. 259–268. Springer, Berlin (2003)
Bonsma, P., Dorn, F.: Tight bounds and a fast FPT algorithm for directed max-leaf spanning tree. ACM Trans. Algorithms 7(4) (2011) (Article 44)
Bonsma, P., Zickfeld, F.: A 3/2-approximation algorithm for finding spanning trees with many leaves in cubic graphs. SIAM J. Discret. Math. 25(4), 1652–1666 (2011)
Bonsma, P., Zickfeld, F.: Improved bounds for spanning trees with many leaves. Discret. Math. 312(6), 1178–1194 (2012)
Correa, J.R., Fernandes, C.G., Matamala, M., Wakabayashi, Y.: A 5/3-approximation for finding spanning trees with many leaves in cubic graphs. In: Approximation and Online Algorithms (WAOA 2007). Volume 4927 of Lecture Notes in Computer Science, pp. 184–192. Springer, Berlin (2008)
Daligault, J., Gutin, G., Kim, E.J., Yeo, A.: FPT algorithms and kernels for the directed \(k\)-leaf problem. J. Comput. Syst. Sci. 76(2), 144–152 (2010)
Daligault, J., Thomassé, S.: On finding directed trees with many leaves. In: Parameterized and Exact Computation (IWPEC 2009). Volume 5917 of Lecture Notes in Computer Science, pp. 86–97. Springer, Berlin (2009)
Drescher, M., Vetta, A.: An approximation algorithm for the max leaf spanning arborescence problem. ACM Trans. Algorithms 6(3) (2010) (Article 46)
Estivill-Castro, V., Fellows, M.R., Langston, M.A., Rosamond, F.A.: FPT is P-time extremal structure I. In: Algorithms and Complexity in Durham (ACiD 2005). Volume 4 of Texts in Algorithmics, pp. 1–41. King’s College, London (2005)
Fellows, M., Lokshtanov, D., Misra, N., Mnich, M., Rosamond, F., Saurabh, S.: The complexity ecology of parameters: an illustration using bounded max leaf number. Theory Comput. Syst. 45(4), 822–848 (2009)
Fernau, H., Kneis, J., Kratsch, D., Langer, A., Liedloff, M., Raible, D., Rossmanith, P.: An exact algorithm for the maximum leaf spanning tree problem. Theor. Comput. Sci. 412(45), 6290–6302 (2011)
Fujie, T.: The maximum-leaf spanning tree problem: formulations and facets. Networks 43(4), 212–223 (2004)
Galbiati, G., Maffioli, F., Morzenti, A.: A short note on the approximability of the maximum leaves spanning tree problem. Inf. Process. Lett. 52(1), 45–49 (1994)
Griggs, J.R., Kleitman, D.J., Shastri, A.: Spanning trees with many leaves in cubic graphs. J. Graph Theory 13(6), 669–695 (1989)
Griggs, J.R., Wu, M.: Spanning trees in graphs of minimum degree 4 or 5. Discret. Math. 104(2), 167–183 (1992)
Guha, S., Khuller, S.: Approximation algorithms for connected dominating sets. Algorithmica 20(4), 374–387 (1998)
Jansen, B.M.P.: Kernelization for maximum leaf spanning tree with positive vertex weights. J. Graph Algorithms Appl. 16(4), 811–846 (2012)
Kamei, S., Kakugawa, H., Devismes, S., Tixeuil, S.: A self-stabilizing 3-approximation for the maximum leaf spanning tree problem in arbitrary networks. J. Comb. Optim. 25(3), 430–459 (2013)
Kleitman, D.J., West, D.B.: Spanning trees with many leaves. SIAM J. Discret. Math. 4(1), 99–106 (1991)
Loryś, K., Zwoźniak, G.: Approximation algorithm for the maximum leaf spanning tree problem for cubic graphs. In: Algorithms-ESA 2002. Volume 2461 of Lecture Notes in Computer Science, pp. 686–697. Springer, Berlin (2002)
Lu, H., Ravi, R.: The power of local optimization: Approximation algorithms for maximum-leaf spanning tree. In: Proceedings of the Thirtieth Annual Allerton Conference on Communication, Control and Computing, pp. 533–542 (1992)
Lu, H., Ravi, R.: Approximating maximum leaf spanning trees in almost linear time. J. Algorithms 29(1), 132–141 (1998)
Payan, C., Tchuente, M., Xuong, N.H.: Arbres avec un nombre maximum de sommets pendants. Discret. Math. 49(3), 267–273 (1984)
Raible, D., Fernau, H.: An amortized search tree analysis for k-leaf spanning tree. In: SOFSEM 2010: Theory and Practice of Computer Science. Volume 5901 of Lecture Notes in Computer Science, pp. 672–684. Springer, Berlin (2010)
Ruan, L., Du, H., Jia, X., Wu, W., Li, Y., Ko, K.: A greedy approximation for minimum connected dominating sets. Theor. Comput. Sci. 329(1–3), 325–330 (2004)
Schwartges, N., Spoerhase, J., Wolff, A.: Approximation algorithms for the maximum leaf spanning tree problem on acyclic digraphs. In: Approximation and Online Algorithms (WAOA 2011). Volume 7164 of Lecture Notes in Computer Science, pp. 77–88. Springer, Berlin (2012)
Solis-Oba, R.: 2-approximation algorithm for finding a spanning tree with maximum number of leaves. In: Algorithms-ESA 1998. Volume 1461 of Lecture Notes in Computer Science, pp. 441–452. Springer, Berlin (1998)
Solis-Oba, R.: 2-Approximation Algorithm for Finding a Spanning Tree with Maximum Number of Leaves. Technical report TR 98-1-010. Max Planck Institute for Computer Science, Saarbruecken (1998). http://domino.mpi-inf.mpg.de/internet/reports.nsf/NumberView/1998-1-010
Storer, J.A.: Constructing full spanning trees for cubic graphs. Inf. Process. Lett. 13(1), 8–11 (1981)
Author information
Authors and Affiliations
Corresponding author
Additional information
An extended abstract of this paper appeared in the proceedings of ESA 1998 [32].
Roberto Solis-Oba: Research of this author partially supported by Grant 227829-2009 from the Natural Sciences and Engineering Research Council of Canada.
Rights and permissions
About this article
Cite this article
Solis-Oba, R., Bonsma, P. & Lowski, S. A 2-Approximation Algorithm for Finding a Spanning Tree with Maximum Number of Leaves. Algorithmica 77, 374–388 (2017). https://doi.org/10.1007/s00453-015-0080-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00453-015-0080-0