Advertisement

Algorithmica

, Volume 77, Issue 1, pp 84–115 | Cite as

Campaign Management Under Approval-Driven Voting Rules

  • Ildiko Schlotter
  • Piotr Faliszewski
  • Edith Elkind
Article
  • 249 Downloads

Abstract

Approval-like voting rules, such as sincere-strategy preference-based approval voting (SP-AV), the Bucklin rule (an adaptive variant of k-approval voting), and the Fallback rule (a hybrid of the Bucklin rule and SP-AV) have many desirable properties: for example, they are easy to understand and encourage the candidates to choose electoral platforms that have a broad appeal. In this paper, we investigate both classic and parameterized computational complexity of electoral campaign management under such rules. We focus on two methods that can be used to promote a given candidate: asking voters to move this candidate upwards in their preference order or asking them to change the number of candidates they approve of. We show that finding an optimal campaign management strategy of the first type is easy for both Bucklin and Fallback. In contrast, the second method is computationally hard even if the degree to which we need to affect the votes is small. Nevertheless, we identify a large class of scenarios that admit fixed-parameter tractable algorithms.

Keywords

Approval voting Bucklin voting Fallback voting  Campaign management Bribery Parameterized complexity 

Notes

Acknowledgments

A preliminary version of this paper was published in AAAI’11. We thank the AAAI and Algorithmica reviewers for their comments.

References

  1. 1.
    Alon, N., Yuster, R., Zwick, U.: Color-coding. J. ACM 42(4), 844–856 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bartholdi III, J., Trick, M.: Stable matching with preferences derived from a psychological model. Oper. Res. Lett. 5(4), 165–169 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Baumeister, D., Erdélyi, G., Hemaspaandra, E., Hemaspaandra, L., Rothe, J.: Computational aspects of approval voting. In: Laslier, J., Sanver, R. (eds.) Handbook of Approval Voting, pp. 199–251. Springer, Berlin (2010)CrossRefGoogle Scholar
  4. 4.
    Baumeister, D., Faliszewski, P., Lang, J., Rothe, J.: Campaigns for lazy voters: truncated ballots. In: Proceedings of the 11th International Conference on Autonomous Agents and Multiagent Systems, pp. 577–584 (2012)Google Scholar
  5. 5.
    Betzler, N., Slinko, A., Uhlmann, J.: On the computation of fully proportional representation. J. Artif. Intell. Res. 47, 475–519 (2013)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Brams, S., Sanver, R.: Critical strategies under approval voting: who gets ruled in and ruled out. Elect. Stud. 25(2), 287–305 (2006)CrossRefGoogle Scholar
  7. 7.
    Brams, S., Sanver, R.: Voting systems that combine approval and preference. In: Brams, S., Gehrlein, W. V., Roberts, F. S. (eds.) The Mathematics of Preference, Choice, and Order: Essays in Honor of Peter C. Fishburn, pp. 215–237. Springer, Berlin (2009)Google Scholar
  8. 8.
    Brandt, F., Brill, M., Hemaspaandra, E., Hemaspaandra, L.: Bypassing combinatorial protections: polynomial-time algorithms for single-peaked electorates. J. Artif. Intell. Res. 53, 439–496 (2015)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Bredereck, R., Chen, J., Faliszewski, P., Nichterlein, A., Niedermeier, R.: Prices matter for the parameterized complexity of shift bribery. In: Proceedings of the 28th AAAI Conference on Artificial Intelligence, pp. 1398–1404 (2014)Google Scholar
  10. 10.
    Bredereck, R., Chen, J., Woeginger, G.: Are there any nicely structured preference profiles nearby? In: Proceedings of the 23rd International Joint Conference on Artificial Intelligence, pp. 62–68 (2013)Google Scholar
  11. 11.
    Conitzer, V.: Eliciting single-peaked preferences using comparison queries. J. Artif. Intell. Res. 35, 161–191 (2009)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Doignon, J., Falmagne, J.: A polynomial time algorithm for unidimensional unfolding representations. J. Algorithms 16(2), 218–233 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Dorn, B., Schlotter, I.: Multivariate complexity analysis of swap bribery. Algorithmica 64(1), 126–151 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Downey, R., Fellows, M.: Parameterized Complexity. Springer, Berlin (1999)CrossRefzbMATHGoogle Scholar
  15. 15.
    Edmonds, J., Karp, R.: Theoretical improvements in algorithmic efficiency for network flow problems. J. ACM 19(2), 248–264 (1972)CrossRefzbMATHGoogle Scholar
  16. 16.
    Elkind, E., Faliszewski, P.: Approximation algorithms for campaign management. In: Proceedings of the 6th International Workshop on Internet and Network Economics, Lecture Notes in Computer Science #6484, pp. 473–482. Springer, Berlin (2010)Google Scholar
  17. 17.
    Elkind, E., Faliszewski, P., Slinko, A.: Swap bribery. In: Proceedings of the 2nd International Symposium on Algorithmic Game Theory, Lecture Notes in Computer Science #5814, pp. 299–310. Springer, Berlin (2009)Google Scholar
  18. 18.
    Elkind, E., Faliszewski, P., Slinko, A.: Swap bribery. Technical Report arXiv:0905.3885 [cs.GT], arXiv.org, May (2009)
  19. 19.
    Elkind, E., Faliszewski, P., Slinko, A.: On the role of distances in defining voting rules. In: Proceedings of the 9th International Conference on Autonomous Agents and Multiagent Systems, pp. 375–382. International Foundation for Autonomous Agents and Multiagent Systems (2010)Google Scholar
  20. 20.
    Erdélyi, G., Fellows, M., Rothe, J., Schend, L.: Control complexity in Bucklin and fallback voting: a theoretical analysis. J. Comput. Syst. Sci. 81(4), 632–660 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Erdélyi, G., Fellows, M., Rothe, J., Schend, L.: Control complexity in Bucklin and fallback voting: an experimental analysis. J. Comput. Syst. Sci. 81(4), 661–670 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Erdélyi, G., Lackner, M., Pfandler, A.: The complexity of nearly single-peaked consistency. In: Proceedings of the 27th AAAI Conference on Artificial Intelligence, pp. 283–289 (2013)Google Scholar
  23. 23.
    Erdélyi, G., Nowak, M., Rothe, J.: Sincere-strategy preference-based approval voting fully resists constructive control and broadly resists destructive control. Math. Log. Q. 55(4), 425–443 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Escoffier, B., Lang, J., Öztürk, M.: Single-peaked consistency and its complexity. In: Proceedings of the 18th European Conference on Artificial Intelligence, pp. 366–370. IOS Press (2008)Google Scholar
  25. 25.
    Faliszewski, P., Hemaspaandra, E., Hemaspaandra, L.: How hard is bribery in elections? J. Artif. Intell. Res. 35, 485–532 (2009)MathSciNetzbMATHGoogle Scholar
  26. 26.
    Faliszewski, P., Hemaspaandra, E., Hemaspaandra, L.: Using complexity to protect elections. Commun. ACM 53(11), 74–82 (2010)CrossRefGoogle Scholar
  27. 27.
    Faliszewski, P., Hemaspaandra, E., Hemaspaandra, L.: The complexity of manipulative attacks in nearly single-peaked electorates. Artif. Intell. 207, 69–99 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Faliszewski, P., Hemaspaandra, E., Hemaspaandra, L.: Weighted electoral control. J. Artif. Intell. Res. 52, 507–542 (2015)MathSciNetzbMATHGoogle Scholar
  29. 29.
    Faliszewski, P., Hemaspaandra, E., Hemaspaandra, L., Rothe, J.: The shield that never was: societies with single-peaked preferences are more open to manipulation and control. Inf. Comput. 209(2), 89–107 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Faliszewski, P., Reisch, Y., Rothe, J., Schend, L.: Complexity of manipulation, bribery, and campaign management in Bucklin and fallback voting. Autonomous Agents and Multi-Agent Systems, 2015. To appear (2015)Google Scholar
  31. 31.
    Faliszewski, P., Rothe, J.: Control and bribery in voting. In: Brandt, F., Conitzer, V., Endriss, U., Lang, J., Procaccia, A.D. (eds.) Handbook of Computational Social Choice, Chapter 7. Cambridge University Press, Cambridge (2015)Google Scholar
  32. 32.
    Fellows, M., Hermelin, D., Rosamond, F., Vialette, S.: On the parameterized complexity of multiple-interval graph problems. Theor. Comput. Sci. 410, 53–61 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Berlin (2006)zbMATHGoogle Scholar
  34. 34.
    Hemaspaandra, E., Hemaspaandra, L., Rothe, J.: Anyone but him: the complexity of precluding an alternative. Artif. Intell. 171(5–6), 255–285 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Kuhn, H.: The Hungarian method for the assignment problem. Naval Res. Logist. Q. 2(1–2), 83–97 (1955)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Laslier, J., Van der Straeten, K.: A live experiment on approval voting. Exp. Econ. 11(1), 97–105 (2008)CrossRefzbMATHGoogle Scholar
  37. 37.
    Magrino, T., Rivest, R., Shen, E., Wagner, D.: Computing the margin of victory in IRV elections. In: Electronic Voting Technology Workshop/Workshop on Trushworthy Elections (2011)Google Scholar
  38. 38.
    Menton, C.: Normalized range voting broadly resists control. Theory Comput. Syst. 53(4), 507–531 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Naor, M., Schulman, L., Srinivasan, A.: Splitters and near-optimal derandomization. In: Proceedings of the 36th IEEE Symposium on Foundations of Computer Science, pp. 182–191 (1995)Google Scholar
  40. 40.
    Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University Press, Oxford (2006)CrossRefzbMATHGoogle Scholar
  41. 41.
    Van der Straeten, K., Laslier, J., Sauger, N., Blais, A.: Strategic, sincere, and heuristic voting under four election rules: an experimental study. Soc. Choice Welf. 35(3), 435–472 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Tardos, É.: A strongly polynomial minimum cost circulation algorithm. Combinatorica 5(3), 247–255 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    Walsh, T.: Uncertainty in preference elicitation and aggregation. In: Proceedings of the 22nd AAAI Conference on Artificial Intelligence, pp. 3–8. AAAI Press (2007)Google Scholar
  44. 44.
    Xia, L.: Computing the margin of victory for various voting rules. In: Proceedings of the 13th ACM Conference on Electronic Commerce, pp. 982–999 (2012)Google Scholar
  45. 45.
    Xia, L., Conitzer, V.: Determining possible and necessary winners given partial orders. J. Artif. Intell. Res. 41, 25–67 (2011)zbMATHGoogle Scholar
  46. 46.
    Xia, L., Zuckerman, M., Procaccia, A., Conitzer, V., Rosenschein, J.: Complexity of unweighted manipulation under some common voting rules. In: Proceedings of the 21st International Joint Conference on Artificial Intelligence, pp. 348–353. AAAI Press (2009)Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Ildiko Schlotter
    • 1
  • Piotr Faliszewski
    • 2
  • Edith Elkind
    • 3
  1. 1.Budapest University of Technology and EconomicsBudapestHungary
  2. 2.AGH UniversityKrakówPoland
  3. 3.University of OxfordOxfordUK

Personalised recommendations