# Campaign Management Under Approval-Driven Voting Rules

## Abstract

Approval-like voting rules, such as sincere-strategy preference-based approval voting (SP-AV), the Bucklin rule (an adaptive variant of *k*-approval voting), and the Fallback rule (a hybrid of the Bucklin rule and SP-AV) have many desirable properties: for example, they are easy to understand and encourage the candidates to choose electoral platforms that have a broad appeal. In this paper, we investigate both classic and parameterized computational complexity of electoral campaign management under such rules. We focus on two methods that can be used to promote a given candidate: asking voters to move this candidate upwards in their preference order or asking them to change the number of candidates they approve of. We show that finding an optimal campaign management strategy of the first type is easy for both Bucklin and Fallback. In contrast, the second method is computationally hard even if the degree to which we need to affect the votes is small. Nevertheless, we identify a large class of scenarios that admit fixed-parameter tractable algorithms.

## Keywords

Approval voting Bucklin voting Fallback voting Campaign management Bribery Parameterized complexity## Notes

### Acknowledgments

A preliminary version of this paper was published in AAAI’11. We thank the AAAI and Algorithmica reviewers for their comments.

## References

- 1.Alon, N., Yuster, R., Zwick, U.: Color-coding. J. ACM
**42**(4), 844–856 (1995)MathSciNetCrossRefMATHGoogle Scholar - 2.Bartholdi III, J., Trick, M.: Stable matching with preferences derived from a psychological model. Oper. Res. Lett.
**5**(4), 165–169 (1986)MathSciNetCrossRefMATHGoogle Scholar - 3.Baumeister, D., Erdélyi, G., Hemaspaandra, E., Hemaspaandra, L., Rothe, J.: Computational aspects of approval voting. In: Laslier, J., Sanver, R. (eds.) Handbook of Approval Voting, pp. 199–251. Springer, Berlin (2010)CrossRefGoogle Scholar
- 4.Baumeister, D., Faliszewski, P., Lang, J., Rothe, J.: Campaigns for lazy voters: truncated ballots. In: Proceedings of the 11th International Conference on Autonomous Agents and Multiagent Systems, pp. 577–584 (2012)Google Scholar
- 5.Betzler, N., Slinko, A., Uhlmann, J.: On the computation of fully proportional representation. J. Artif. Intell. Res.
**47**, 475–519 (2013)MathSciNetMATHGoogle Scholar - 6.Brams, S., Sanver, R.: Critical strategies under approval voting: who gets ruled in and ruled out. Elect. Stud.
**25**(2), 287–305 (2006)CrossRefGoogle Scholar - 7.Brams, S., Sanver, R.: Voting systems that combine approval and preference. In: Brams, S., Gehrlein, W. V., Roberts, F. S. (eds.) The Mathematics of Preference, Choice, and Order: Essays in Honor of Peter C. Fishburn, pp. 215–237. Springer, Berlin (2009)Google Scholar
- 8.Brandt, F., Brill, M., Hemaspaandra, E., Hemaspaandra, L.: Bypassing combinatorial protections: polynomial-time algorithms for single-peaked electorates. J. Artif. Intell. Res.
**53**, 439–496 (2015)MathSciNetMATHGoogle Scholar - 9.Bredereck, R., Chen, J., Faliszewski, P., Nichterlein, A., Niedermeier, R.: Prices matter for the parameterized complexity of shift bribery. In: Proceedings of the 28th AAAI Conference on Artificial Intelligence, pp. 1398–1404 (2014)Google Scholar
- 10.Bredereck, R., Chen, J., Woeginger, G.: Are there any nicely structured preference profiles nearby? In: Proceedings of the 23rd International Joint Conference on Artificial Intelligence, pp. 62–68 (2013)Google Scholar
- 11.Conitzer, V.: Eliciting single-peaked preferences using comparison queries. J. Artif. Intell. Res.
**35**, 161–191 (2009)MathSciNetMATHGoogle Scholar - 12.Doignon, J., Falmagne, J.: A polynomial time algorithm for unidimensional unfolding representations. J. Algorithms
**16**(2), 218–233 (1994)MathSciNetCrossRefMATHGoogle Scholar - 13.Dorn, B., Schlotter, I.: Multivariate complexity analysis of swap bribery. Algorithmica
**64**(1), 126–151 (2012)MathSciNetCrossRefMATHGoogle Scholar - 14.Downey, R., Fellows, M.: Parameterized Complexity. Springer, Berlin (1999)CrossRefMATHGoogle Scholar
- 15.Edmonds, J., Karp, R.: Theoretical improvements in algorithmic efficiency for network flow problems. J. ACM
**19**(2), 248–264 (1972)CrossRefMATHGoogle Scholar - 16.Elkind, E., Faliszewski, P.: Approximation algorithms for campaign management. In: Proceedings of the 6th International Workshop on Internet and Network Economics, Lecture Notes in Computer Science #6484, pp. 473–482. Springer, Berlin (2010)Google Scholar
- 17.Elkind, E., Faliszewski, P., Slinko, A.: Swap bribery. In: Proceedings of the 2nd International Symposium on Algorithmic Game Theory, Lecture Notes in Computer Science #5814, pp. 299–310. Springer, Berlin (2009)Google Scholar
- 18.Elkind, E., Faliszewski, P., Slinko, A.: Swap bribery. Technical Report arXiv:0905.3885 [cs.GT], arXiv.org, May (2009)
- 19.Elkind, E., Faliszewski, P., Slinko, A.: On the role of distances in defining voting rules. In: Proceedings of the 9th International Conference on Autonomous Agents and Multiagent Systems, pp. 375–382. International Foundation for Autonomous Agents and Multiagent Systems (2010)Google Scholar
- 20.Erdélyi, G., Fellows, M., Rothe, J., Schend, L.: Control complexity in Bucklin and fallback voting: a theoretical analysis. J. Comput. Syst. Sci.
**81**(4), 632–660 (2015)MathSciNetCrossRefMATHGoogle Scholar - 21.Erdélyi, G., Fellows, M., Rothe, J., Schend, L.: Control complexity in Bucklin and fallback voting: an experimental analysis. J. Comput. Syst. Sci.
**81**(4), 661–670 (2015)MathSciNetCrossRefMATHGoogle Scholar - 22.Erdélyi, G., Lackner, M., Pfandler, A.: The complexity of nearly single-peaked consistency. In: Proceedings of the 27th AAAI Conference on Artificial Intelligence, pp. 283–289 (2013)Google Scholar
- 23.Erdélyi, G., Nowak, M., Rothe, J.: Sincere-strategy preference-based approval voting fully resists constructive control and broadly resists destructive control. Math. Log. Q.
**55**(4), 425–443 (2009)MathSciNetCrossRefMATHGoogle Scholar - 24.Escoffier, B., Lang, J., Öztürk, M.: Single-peaked consistency and its complexity. In: Proceedings of the 18th European Conference on Artificial Intelligence, pp. 366–370. IOS Press (2008)Google Scholar
- 25.Faliszewski, P., Hemaspaandra, E., Hemaspaandra, L.: How hard is bribery in elections? J. Artif. Intell. Res.
**35**, 485–532 (2009)MathSciNetMATHGoogle Scholar - 26.Faliszewski, P., Hemaspaandra, E., Hemaspaandra, L.: Using complexity to protect elections. Commun. ACM
**53**(11), 74–82 (2010)CrossRefGoogle Scholar - 27.Faliszewski, P., Hemaspaandra, E., Hemaspaandra, L.: The complexity of manipulative attacks in nearly single-peaked electorates. Artif. Intell.
**207**, 69–99 (2014)MathSciNetCrossRefMATHGoogle Scholar - 28.Faliszewski, P., Hemaspaandra, E., Hemaspaandra, L.: Weighted electoral control. J. Artif. Intell. Res.
**52**, 507–542 (2015)MathSciNetMATHGoogle Scholar - 29.Faliszewski, P., Hemaspaandra, E., Hemaspaandra, L., Rothe, J.: The shield that never was: societies with single-peaked preferences are more open to manipulation and control. Inf. Comput.
**209**(2), 89–107 (2011)MathSciNetCrossRefMATHGoogle Scholar - 30.Faliszewski, P., Reisch, Y., Rothe, J., Schend, L.: Complexity of manipulation, bribery, and campaign management in Bucklin and fallback voting. Autonomous Agents and Multi-Agent Systems, 2015. To appear (2015)Google Scholar
- 31.Faliszewski, P., Rothe, J.: Control and bribery in voting. In: Brandt, F., Conitzer, V., Endriss, U., Lang, J., Procaccia, A.D. (eds.) Handbook of Computational Social Choice, Chapter 7. Cambridge University Press, Cambridge (2015)Google Scholar
- 32.Fellows, M., Hermelin, D., Rosamond, F., Vialette, S.: On the parameterized complexity of multiple-interval graph problems. Theor. Comput. Sci.
**410**, 53–61 (2009)MathSciNetCrossRefMATHGoogle Scholar - 33.Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Berlin (2006)MATHGoogle Scholar
- 34.Hemaspaandra, E., Hemaspaandra, L., Rothe, J.: Anyone but him: the complexity of precluding an alternative. Artif. Intell.
**171**(5–6), 255–285 (2007)MathSciNetCrossRefMATHGoogle Scholar - 35.Kuhn, H.: The Hungarian method for the assignment problem. Naval Res. Logist. Q.
**2**(1–2), 83–97 (1955)MathSciNetCrossRefMATHGoogle Scholar - 36.Laslier, J., Van der Straeten, K.: A live experiment on approval voting. Exp. Econ.
**11**(1), 97–105 (2008)CrossRefMATHGoogle Scholar - 37.Magrino, T., Rivest, R., Shen, E., Wagner, D.: Computing the margin of victory in IRV elections. In: Electronic Voting Technology Workshop/Workshop on Trushworthy Elections (2011)Google Scholar
- 38.Menton, C.: Normalized range voting broadly resists control. Theory Comput. Syst.
**53**(4), 507–531 (2013)MathSciNetCrossRefMATHGoogle Scholar - 39.Naor, M., Schulman, L., Srinivasan, A.: Splitters and near-optimal derandomization. In: Proceedings of the 36th IEEE Symposium on Foundations of Computer Science, pp. 182–191 (1995)Google Scholar
- 40.Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University Press, Oxford (2006)CrossRefMATHGoogle Scholar
- 41.Van der Straeten, K., Laslier, J., Sauger, N., Blais, A.: Strategic, sincere, and heuristic voting under four election rules: an experimental study. Soc. Choice Welf.
**35**(3), 435–472 (2010)MathSciNetCrossRefMATHGoogle Scholar - 42.Tardos, É.: A strongly polynomial minimum cost circulation algorithm. Combinatorica
**5**(3), 247–255 (1985)MathSciNetCrossRefMATHGoogle Scholar - 43.Walsh, T.: Uncertainty in preference elicitation and aggregation. In: Proceedings of the 22nd AAAI Conference on Artificial Intelligence, pp. 3–8. AAAI Press (2007)Google Scholar
- 44.Xia, L.: Computing the margin of victory for various voting rules. In: Proceedings of the 13th ACM Conference on Electronic Commerce, pp. 982–999 (2012)Google Scholar
- 45.Xia, L., Conitzer, V.: Determining possible and necessary winners given partial orders. J. Artif. Intell. Res.
**41**, 25–67 (2011)MATHGoogle Scholar - 46.Xia, L., Zuckerman, M., Procaccia, A., Conitzer, V., Rosenschein, J.: Complexity of unweighted manipulation under some common voting rules. In: Proceedings of the 21st International Joint Conference on Artificial Intelligence, pp. 348–353. AAAI Press (2009)Google Scholar