Advertisement

Algorithmica

, Volume 76, Issue 2, pp 344–380 | Cite as

It’s a Small World for Random Surfers

  • Abbas Mehrabian
  • Nick Wormald
Article
  • 173 Downloads

Abstract

We prove logarithmic upper bounds for the diameters of the random-surfer Webgraph model and the PageRank-based selection Webgraph model, confirming the small world phenomenon holds for them. In the special case when the generated graph is a tree, we provide close lower and upper bounds for the diameters of both models.

Keywords

Random-surfer Webgraph model PageRank-based selection model Small-world phenomenon Height of random trees Probabilistic analysis Large deviations 

Notes

Acknowledgments

The authors thank the referees for their careful readings of the manuscript and their many useful comments.

References

  1. 1.
    Barabási, A.-L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bhamidi, S.: Universal techniques to analyze preferential attachment trees: global and local analysis. (2007). (preprint) http://www.unc.edu/~bhamidi/
  3. 3.
    Bianconi, G., Barabási, A.-L.: Competition and multiscaling in evolving networks. Europhys. Lett. 54(4), 436–442 (2001)CrossRefGoogle Scholar
  4. 4.
    Blum, A., Chan, T.-H.H., Rwebangira, M.R.: A random-surfer web-graph model. In: Proceedings of the 8th Workshop on Algorithm Engineering and Experiments and the 3rd Workshop on Analytic Algorithmics and Combinatorics, ALENEX/ANALCO ’06, pp. 238–246 (2006)Google Scholar
  5. 5.
    Bollobás, B., Riordan, O.: The diameter of a scale-free random graph. Combinatorica 24(1), 5–34 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Bonato, A., Chung, F.: Complex networks. In: Gross, J.L., Yellen, J., Zhang, P. (eds.) Handbook of Graph Theory, Chapter 12.1, 2nd edn, pp. 1456–1476. Chapman & Hall, London (2013)Google Scholar
  7. 7.
    Broutin, N., Devroye, L.: Large deviations for the weighted height of an extended class of trees. Algorithmica 46(3–4), 271–297 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Chakrabarti, D., Faloutsos, C.: Graph mining: laws, generators, and algorithms. ACM Comput. Surv. 38(1), (2006). Article 2Google Scholar
  9. 9.
    Chebolu, P., Melsted, P.: Pagerank and the random surfer model. In: Proceedings of the 19th Annual ACM-SIAM Symposium on Discrete Algorithms. SODA ’08, pp. 1010–1018. Philadelphia, PA, USA (2008)Google Scholar
  10. 10.
    Dembo, A., Zeitouni, O.: Large Deviations Techniques and Applications, Volume 38 of Stochastic Modelling and Applied Probability. Springer, Berlin (2010). Corrected reprint of the second (1998) editionGoogle Scholar
  11. 11.
    Devroye, L., Fawzi, O., Fraiman, N.: Depth properties of scaled attachment random recursive trees. Random Struct. Algorithms 41(1), 66–98 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Dommers, S., van der Hofstad, R., Hooghiemstra, G.: Diameters in preferential attachment models. J. Stat. Phys. 139(1), 72–107 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Drinea, E., Frieze, A., Mitzenmacher, M.: Balls and bins models with feedback. In: Proceedings of the 13th Annual ACM-SIAM Symposium on Discrete Algorithms. SODA ’02, pp. 308–315. Philadelphia, PA, USA (2002)Google Scholar
  14. 14.
    Ergün, G., Rodgers, G.J.: Growing random networks with fitness. Phys. A Stat. Mech. Appl. 303(1–2), 261–272 (2002)CrossRefzbMATHGoogle Scholar
  15. 15.
    Krapivsky, P.L., Redner, S.: Organization of growing random networks. Phys. Rev. E 63, 066123 (2001)CrossRefGoogle Scholar
  16. 16.
    Leskovec, J., Kleinberg, J., Faloutsos, C.: Graph evolution: densification and shrinking diameters. ACM Trans. Knowl. Discov. Data (TKDD) 1(1), (2007). Article 2Google Scholar
  17. 17.
    Pandurangan, G., Raghavan, P., Upfal, E.: Using pagerank to characterize web structure. Internet Math. 3(1), 1–20 (2006). Conference version in COCOON 2002Google Scholar
  18. 18.
    Pittel, B.: Note on the heights of random recursive trees and random \(m\)-ary search trees. Random Struct. Algorithms 5(2), 337–347 (1994)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Combinatorics and OptimizationUniversity of WaterlooWaterlooCanada
  2. 2.School of Mathematical SciencesMonash UniversityClaytonAustralia

Personalised recommendations