Algorithmica

, Volume 74, Issue 4, pp 1363–1385 | Cite as

On Resilient Graph Spanners

  • Giorgio Ausiello
  • Paolo G. Franciosa
  • Giuseppe F. Italiano
  • Andrea Ribichini
Article

Abstract

We introduce and investigate a new notion of resilience in graph spanners. Let \(S\) be a spanner of a weighted graph \(G\). Roughly speaking, we say that \(S\) is resilient if all its point-to-point distances are resilient to edge failures. Namely, whenever any edge in \(G\) fails, then as a consequence of this failure all distances do not degrade in \(S\) substantially more than in \(G\) (i.e., the relative distance increases in \(S\) are very close to those in the underlying graph \(G\)). In this paper we show that sparse resilient spanners exist, and that they can be computed efficiently.

Keywords

Graph algorithms Graph spanners Fault tolerance   Algorithm complexity 

References

  1. 1.
    Aingworth, D., Chekuri, C., Indyk, P., Motwani, R.: Fast estimation of diameter and shortest paths (without matrix multiplication). SIAM J. Comput. 28(4), 1167–1181 (1999)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Althofer, I., Das, G., Dobkin, D.P., Joseph, D., Soares, J.: On sparse spanners of weighted graphs. Discrete Comput. Geom. 9, 81–100 (1993)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Ausiello, G., Demetrescu, C., Franciosa, P.G., Italiano, G.F., Ribichini, A.: Graph spanners in the streaming model: an experimental study. Algorithmica 55(2), 346–374 (2009)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Ausiello, G., Franciosa, P.G., Italiano, G.F.: Small stretch spanners on dynamic graphs. J. Graph Algorithms Appl. 10(2), 365–385 (2006)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Ausiello, G., Franciosa, P.G., Italiano, G.F., Ribichini, A.: Computing graph spanner in small memory: fault-tolerance and streaming. Discrete Math. Algorithms Appl. 2(4), 591–605 (2010)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Baswana, S.: Dynamic algorithms for graph spanners. In: Proceedings of 13th Annual European Symposium on Algorithms (ESA’06), pp. 76–87 (2006)Google Scholar
  7. 7.
    Baswana, S., Kavitha, T., Mehlhorn, K., Pettie, S.: Additive spanners and (alpha, beta)-spanners. ACM Trans. Algorithms 7(1), 5:1–5:26 (2010)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Baswana, S., Khurana, S., Sarkar, S.: Fully dynamic randomized algorithms for graph spanners. ACM Trans. Algorithms 8(4), 35:1–35:51 (2012)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Bondy, J.A., Simonovits, M.: Cycles of even length in graphs. J. Comb. Theory Ser. B 16(2), 97–105 (1974)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Braunschvig, G., Chechik, S., Peleg, D.: Fault tolerant additive spanners. In: Graph-Theoretic Concepts in Computer Science—38th International Workshop, (WG’12), volume 7551 of LNCS, pp 206–214. Springer, Berlin (2012)Google Scholar
  11. 11.
    Chechik, S.: New additive spanners. In: Proceedings of the 24th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’13), pp. 498–512 (2013)Google Scholar
  12. 12.
    Chechik, S., Langberg, M., Peleg, D., Roditty, L.: Fault tolerant spanners for general graphs. SIAM J. Comput. 39(7), 3403–3423 (2010)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Coppersmith, D., Elkin, M.: Sparse sourcewise and pairwise distance preservers. SIAM J. Discrete Math. 20(2), 463–501 (2006)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Demetrescu, C., Thorup, M., Chowdhury, R.A., Ramachandran, V.: Oracles for distances avoiding a failed node or link. SIAM J. Comput. 37(5), 1299–1318 (2008)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Dinitz, M., Krauthgamer, R.: Fault-tolerant spanners: better and simpler. In: Proceedings of the 30th Annual ACM Symposium on Principles of Distributed Computing (PODC’11), pp. 169–178 (2011)Google Scholar
  16. 16.
    Dor, D., Halperin, S., Zwick, U.: All-pairs almost shortest paths. SIAM J. Comput. 29(5), 1740–1759 (2000)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Elkin, M.: Streaming and fully dynamic centralized algorithms for constructing and maintaining sparse spanners. ACM Trans. Algorithms 7(2), 1–17 (2011)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Halperin, S., Zwick, U.: Linear time deterministic algorithm for computing spanners for unweighted graphs (1996) (unpublished manuscript)Google Scholar
  19. 19.
    Jacob, R., Koschützki, D., Lehmann, K.A., Peeters, L., Tenfelde-Podehl, D.: Algorithms for centrality indices. In: Brandes, U., Erlebach, T. (eds.) Network Analysis, volume 3418 of LNCS, pp. 62–82. Springer, Berlin (2005)Google Scholar
  20. 20.
    Kővári, T., Sós, V.T., Turán, P.: On a problem of K. Zarankiewicz. Colloq. Math. 3(1), 50–57 (1954)MathSciNetMATHGoogle Scholar
  21. 21.
    Koschützki, D., Lehmann, K.A., Peeters, L., Richter, S., Tenfelde-Podehl, D., Zlotowski, O.: Centrality indices. In: Brandes, U., Erlebach, T. (eds.) Network Analysis, volume 3418 of LNCS, pp. 16–61. Springer, Berlin (2005)Google Scholar
  22. 22.
    Matoušek, J.: Lectures on Discrete Geometry. Springer, Berlin (2002)CrossRefMATHGoogle Scholar
  23. 23.
    Nisan, N., Ronen, A.: Algorithmic mechanism design. Games Econ. Behav. 35(1–2), 166–196 (2001)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Peleg, D., Shäffer, A.: Graph spanners. J. Graph Theory 13, 99–116 (1989)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Roditty, L., Thorup, M., Zwick, U.: Deterministic constructions of approximate distance oracles and spanners. In: Proceedings of the 32nd International Colloquium on Automata, Languages and Programming (ICALP’05), volume 3580 of LNCS, pp. 261–272. Springer, Berlin (2005)Google Scholar
  26. 26.
    Zarankiewicz, K.: Problem p 101. Colloq. Math. 2, 301 (1951)Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Giorgio Ausiello
    • 1
  • Paolo G. Franciosa
    • 2
  • Giuseppe F. Italiano
    • 3
  • Andrea Ribichini
    • 1
  1. 1.Dipartimento di Ingegneria Informatica, Automatica e GestionaleUniversità di Roma “La Sapienza”RomeItaly
  2. 2.Dipartimento di Scienze StatisticheUniversità di Roma “La Sapienza”RomeItaly
  3. 3.Dipartimento di Ingegneria Civile e Ingegneria InformaticaUniversità di Roma “Tor Vergata”RomeItaly

Personalised recommendations