, Volume 74, Issue 4, pp 1404–1434 | Cite as

Distance Oracles for Time-Dependent Networks

  • Spyros Kontogiannis
  • Christos Zaroliagis


We present the first approximate distance oracle for sparse directed networks with time-dependent arc-travel-times determined by continuous, piecewise linear, positive functions possessing the FIFO property. Our approach precomputes \((1+\varepsilon )\)-approximate distance summaries from selected landmark vertices to all other vertices in the network. Our oracle uses subquadratic space and time preprocessing, and provides two sublinear-time query algorithms that deliver constant and \((1+\sigma )\)-approximate shortest-travel-times, respectively, for arbitrary origin–destination pairs in the network, for any constant \(\sigma > \varepsilon \). Our oracle is based only on the sparsity of the network, along with two quite natural assumptions about travel-time functions which allow the smooth transition towards asymmetric and time-dependent distance metrics.


Time-dependent shortest paths FIFO property Distance oracles 


  1. 1.
    Agarwal, R.: The space-stretch-time trade-off in distance oracles. In: ESA (2014), to appearGoogle Scholar
  2. 2.
    Agarwal, R., Godfrey, P.: Distance oracles for stretch less than 2. In: SODA 2013, pp. 526–538. ACM-SIAM, (2013)Google Scholar
  3. 3.
    Akrida, E., Gasieniec, L., Mertzios, G., Spirakis, P.: Ephemeral networks with random availability of links: diameter and connectivity. In: 26th ACM Symposium on Parallelism in Algorithms and Architectures (SPAA ’14), pp. 267–276, (2014)Google Scholar
  4. 4.
    Batz, G.V., Geisberger, R., Sanders, P., Vetter, C.: Minimum time-dependent travel times with contraction hierarchies. ACM J. Exper. Algorithm. 18, 1–43 (2013)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Bertsekas, D., Tsitsiklis, J.: An analysis of stochastic shortest path problems. Math. Oper. Res. 16(3), 580–595 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Cooke, K., Halsey, E.: The shortest route through a network with time-dependent intermodal transit times. J. Math. Anal. Appl. 14(3), 493–498 (1966)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Dean, B.C.: Continuous-time dynamic shortest path algorithms. MSc thesis. MIT, (1999)Google Scholar
  8. 8.
    Dean, B.C.: Algorithms for minimum-cost paths in time-dependent networks with waiting policies. Networks 44(1), 41–46 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Dean, B.C.: Shortest paths in FIFO time-dependent networks: theory and algorithms. Technical report, MIT (2004)Google Scholar
  10. 10.
    Dehne, F., Masoud, O.T., Sack, J.R.: Shortest paths in time-dependent fifo networks. Algorithmica 62(1–2), 416–435 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Delling, D.: Time-dependent SHARC-routing. Algorithmica 60(1), 60–94 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Delling, D., Wagner, D.: Time-Dependent Route Planning. In: Ahuja, R.K., Möhring, R.H., Zaroliagis, C. (eds.) Robust and Online Large-Scale Optimization, LNCS 5868, pp. 207–230. Springer, Berlin (2009)Google Scholar
  13. 13.
    Demetrescu, C., Italiano, G.F.: Dynamic shortest paths and transitive closure: an annotated bibliography (draft), (2005).
  14. 14.
    Dreyfus, S.E.: An appraisal of some shortest-path algorithms. Oper. Res. 17(3), 395–412 (1969)CrossRefzbMATHGoogle Scholar
  15. 15.
    eCOMPASS Project (2011–2014).
  16. 16.
    Foschini, L., Hershberger, J., Suri, S.: On the complexity of time-dependent shortest paths. Algorithmica 68(4), 1075–1097 (2014). Prelim. version in SODA 2011MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Gusfield, D.M.: Sensitivity analysis for combinatorial optimization. Phd thesis, University of California, Berkeley, (1980)Google Scholar
  18. 18.
    Kempe, D., Kleinberg, J., Kumar, A.: Connectivity and inference problems for temporal networks. J. Comput. Syst. Sci. 64, 820–842 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    King, V.: Fully dynamic algorithms for maintaining all-pairs shortest paths and transitive closure in digraphs. In: Proceedings of 40th Annual IEEE Symposium on Foundations of Computer Science, pp. 81–89, (1999)Google Scholar
  20. 20.
    Kontogiannis, S., Zaroliagis, C.: Distance oracles for time dependent networks. In: Automata, Languages and Programming (Track A). Lecture Notes in Computer Science 8572, pp. 713–725. Springer (2014)Google Scholar
  21. 21.
    Mertzios, G., Michail, O., Chatzigiannakis, I., Spirakis, P.: Temporal Network Optimization Subject to Connectivity Constraints In: Automata, Languages and Programming (Track C). Lecture Notes in Computer Science 7966, pp. 657–668. Springer (2013)Google Scholar
  22. 22.
    Mulmuley, K., Shah, P.: A lower bound for the shortest path problem. J. Compt. Syst. Sci. 63, 253–267 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Nannicini, G., Delling, D., Liberti, L., Schultes, D.: Bidirectional A* search on time-dependent road networks. Networks 59, 240–251 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Nikolova, E., Brand, M., Karger, D.: Optimal route planning under uncertainty. In: International Conference on Automated Planning and Scheduling, (2006)Google Scholar
  25. 25.
    Nikolova, E., Kelner, J., Brand, M., Mitzenmacher, M.: Stochastic shortest paths via quasi-convex maximization. In: 14th European Symposium on Algorithms, pp. 552–563, (2006)Google Scholar
  26. 26.
    Orda, A., Rom, R.: Shortest-path and minimum delay algorithms in networks with time-dependent edge-length. J. ACM 37(3), 607–625 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Patrascu, M., Roditty, L.: cDistance oracles beyond the Thorup-Zwick bound. In: IEEE Symposium on Foundations of Computer Science, pp. 815–823, (2010)Google Scholar
  28. 28.
    Porat, E., Roditty, L.: Preprocess, set, query! In: European Symposium on Algorithms, LNCS 6942, pp. 603–614. Springer, (2011)Google Scholar
  29. 29.
    Roditty, L., Zwick, U.: On Dynamic Shortest Paths Problems. In: 12th Annual European Symposium on Algorithms. Lecture Notes in Computer Science 3221, pp. 580–591. Springer (2004)Google Scholar
  30. 30.
    Sherali, H., Ozbay, K., Subramanian, S.: The time-dependent shortest pair of disjoint paths problem: complexity, models, and algorithms. Networks 31(4), 259–272 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Sommer, C.: Shortest-path queries in static networks. ACM Comput. Surv. 46, 1–31 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Sommer, C., Verbin, E., Yu, W.: Distance oracles for sparse graphs. In: IEEE Symposium on Foundations of Computer Science, pp. 703–712, (2009)Google Scholar
  33. 33.
    Thorup, M.: Worst-case update times for fully-dynamic all-pairs shortest paths. In: 37th Annual ACM Symposium on Theory of Computing, pp. 112–119, (2005)Google Scholar
  34. 34.
    Thorup, M., Zwick, U.: Approximate distance oracles. J. ACM 52, 1–24 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Wulff-Nilsen, C.: Approximate distance oracles with improved preprocessing time. In: SODA 2012. ACM-SIAM, (2012)Google Scholar
  36. 36.
    Wulff-Nilsen, C.: Approximate distance oracles with improved query time, (2012). arXiv:1202.2336

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Computer Science and EngineeringUniversity of IoanninaIoanninaGreece
  2. 2.Computer Technology Institute and Press “Diophantus”PatrasGreece
  3. 3.Department of Computer Engineering and InformaticsUniversity of PatrasPatrasGreece

Personalised recommendations