Algorithmica

, Volume 73, Issue 1, pp 42–62 | Cite as

Random Shortest Paths: Non-Euclidean Instances for Metric Optimization Problems

  • Karl Bringmann
  • Christian Engels
  • Bodo Manthey
  • B. V. Raghavendra Rao
Article
  • 211 Downloads

Abstract

Probabilistic analysis for metric optimization problems has mostly been conducted on random Euclidean instances, but little is known about metric instances drawn from distributions other than the Euclidean. This motivates our study of random metric instances for optimization problems obtained as follows: Every edge of a complete graph gets a weight drawn independently at random. The distance between two nodes is then the length of a shortest path (with respect to the weights drawn) that connects these nodes. We prove structural properties of the random shortest path metrics generated in this way. Our main structural contribution is the construction of a good clustering. Then we apply these findings to analyze the approximation ratios of heuristics for matching, the traveling salesman problem (TSP), and the \(k\)-median problem, as well as the running-time of the 2-opt heuristic for the TSP. The bounds that we obtain are considerably better than the respective worst-case bounds. This suggests that random shortest path metrics are easy instances, similar to random Euclidean instances, albeit for completely different structural reasons.

Keywords

Random shortest paths First passage percolation Approximation algorithms Random metrics 

References

  1. 1.
    Addario-Berry, L., Broutin, N., Lugosi, G.: The longest minimum-weight path in a complete graph. Comb. Probab. Comput. 19(1), 1–19 (2010)MATHMathSciNetCrossRefGoogle Scholar
  2. 2.
    Arthur, D., Manthey, B., Röglin, H.: Smoothed analysis of the \(k\)-means method. J. ACM 58(5), 19 (2011)Google Scholar
  3. 3.
    Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local search heuristic for \(k\)-median and facility location problems. SIAM J. Comput. 33(3), 544–562 (2004)MATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    Ausiello, G., Crescenzi, P., Gambosi, G., Kann, V., Marchetti-Spaccamela, A., Protasi, M.: Complexity and Approximation: Combinatorial Optimization Problems and Their Approximability Properties. Springer, London (1999)MATHCrossRefGoogle Scholar
  5. 5.
    Avis, D., Davis, B., Steele, J.M.: Probabilistic analysis of a greedy heuristic for Euclidean matching. Probab. Eng. Inf. Sci. 2, 143–156 (1988)MATHCrossRefGoogle Scholar
  6. 6.
    Azar, Y.: Lower bounds for insertion methods for TSP. Comb. Probab. Comput. 3, 285–292 (1994)MATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    Bhamidi, S., van der Hofstad, R., Hooghiemstra, G.: First passage percolation on random graphs with finite mean degrees. Ann. Appl. Probab. 20(5), 1907–1965 (2010)MATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    Bhamidi, S., van der Hofstad, R., Hooghiemstra, G.: First passage percolation on the Erdős-Rényi random graph. Combi. Probab. Comput. 20(5), 683–707 (2011)MATHCrossRefGoogle Scholar
  9. 9.
    Bhamidi, S., van der Hofstad, R., Hooghiemstra, G.: Universality for first passage percolation on sparse random graphs. Technical Report, arxiv.org/pdf/1005.0649 (2012)
  10. 10.
    Blair-Stahn, N.D.: First passage percolation and competition models. Technical Report, arxiv.org/pdf/1005.0649v1 (2010)
  11. 11.
    Broadbent, S.R., Hammersley, J.M.: Percolation processes. I. Crystals and mazes. In: Proceedings of the Cambridge Philosophical Society, vol. 53, Issue 3, pp. 629–641 (1957)Google Scholar
  12. 12.
    Chandra, B., Karloff, H.J., Tovey, C.A.: New results on the old \(k\)-opt algorithm for the traveling salesman problem. SIAM J. Comput. 28(6), 1998–2029 (1999)MATHMathSciNetCrossRefGoogle Scholar
  13. 13.
    Davis, R., Prieditis, A.: The expected length of a shortest path. Inf. Process. Lett. 46(3), 135–141 (1993)MATHMathSciNetCrossRefGoogle Scholar
  14. 14.
    Dyer, M., Frieze, A., Pittel, B.: The average performance of the greedy matching algorithm. Ann. Appl. Probab. 3(2), 526–552 (1993)MATHMathSciNetCrossRefGoogle Scholar
  15. 15.
    Dyer, M.E., Frieze, A.M.: On patching algorithms for random asymmetric travelling salesman problems. Math. Program. 46, 361–378 (1990)MATHMathSciNetCrossRefGoogle Scholar
  16. 16.
    Eckhoff, M., Goodman, J., van der Hofstad, R., Nardi, F.R.: Short paths for first passage percolation on the complete graph. J. Stat. Phys. 151(6), 1056–1088 (2013)MATHMathSciNetCrossRefGoogle Scholar
  17. 17.
    Engels, C., Manthey, B.: Average-case approximation ratio of the 2-opt algorithm for the TSP. Oper. Res. Lett. 37(2), 83–84 (2009)MATHMathSciNetCrossRefGoogle Scholar
  18. 18.
    Englert, M., Röglin, H., Vöcking, B.: Worst case and probabilistic analysis of the 2-Opt algorithm for the TSP. Algorithmica 68(1), 190–264 (2014)MATHMathSciNetCrossRefGoogle Scholar
  19. 19.
    Frieze, A.M.: On random symmetric travelling salesman problems. Math. Oper. Res. 29(4), 878–890 (2004)MATHMathSciNetCrossRefGoogle Scholar
  20. 20.
    Frieze, A.M., Grimmett, G.R.: The shortest-path problem for graphs with random arc-lengths. Discret. Appl. Math. 10, 57–77 (1985)MATHMathSciNetCrossRefGoogle Scholar
  21. 21.
    Hassin, R., Zemel, E.: On shortest paths in graphs with random weights. Math. Oper. Res. 10(4), 557–564 (1985)MATHMathSciNetCrossRefGoogle Scholar
  22. 22.
    van der Hofstad, R., Hooghiemstra, G., van Mieghem, P.: First passage percolation on the random graph. Probab. Eng. Inf. Sci. 15(2), 225–237 (2001)MATHCrossRefGoogle Scholar
  23. 23.
    van der Hofstad, R., Hooghiemstra, G., van Mieghem, P.: Size and weight of shortest path trees with exponential link weights. Comb. Probab. Computi. 15(6), 903–926 (2006)MATHCrossRefGoogle Scholar
  24. 24.
    Janson, S.: One, two, three times \(\log n/n\) for paths in a complete graph with edge weights. Comb. Probab. Comput. 8(4), 347–361 (1999)MATHMathSciNetCrossRefGoogle Scholar
  25. 25.
    Johnson, D.S., McGeoch, L.A.: Experimental analysis of heuristics for the STSP. In: Gutin, G., Punnen, A.P. (eds.) The Traveling Salesman Problem and its Variations, chap. 9. Kluwer, Dordrecht (2002)Google Scholar
  26. 26.
    Karp, R.M.: Probabilistic analysis of partitioning algorithms for the traveling-salesman problem in the plane. Math. Oper. Res. 2(3), 209–224 (1977)MATHMathSciNetCrossRefGoogle Scholar
  27. 27.
    Karp, B.M., Steele, J.M.: Probabilistic analysis of heuristics. In: Lawler, E.L., Lenstra, J.K., Kan, A.H.G.R., Shmoys, D.B. (eds.) The Traveling Salesman Problem A Guided Tour of Combinatorial Optimization, pp. 181–205. Wiley, Chichester (1985)Google Scholar
  28. 28.
    Kern, W.: A probabilistic analysis of the switching algorithm for the TSP. Math. Program. 44(2), 213–219 (1989)MATHMathSciNetCrossRefGoogle Scholar
  29. 29.
    Kolossváry, I., Komjáthy, J.: First passage percolation on inhomogeneous random graphs. Technical Report], arxiv.org/pdf/1201.3137v1 (2012)
  30. 30.
    Kulkarni, V.G., Adlakha, V.G.: Maximum flow in planar networks in exponentially distributed arc capacities. Commun. Stat. Stoch. Models 1(3), 263–289 (1985)MATHMathSciNetCrossRefGoogle Scholar
  31. 31.
    Kulkarni, V.G.: Shortest paths in networks with exponentially distributed arc lengths. Networks 16(3), 255–274 (1986)MATHMathSciNetCrossRefGoogle Scholar
  32. 32.
    Kulkarni, V.G.: Minimal spanning trees in undirected networks with exponentially distributed arc weights. Networks 18(2), 111–124 (1988)MATHMathSciNetCrossRefGoogle Scholar
  33. 33.
    Manthey, B., Veenstra, R.: Smoothed analysis of the 2-Opt heuristic for the TSP: Polynomial bounds for Gaussian noise. In: Cai, L., Cheng, S.-W., Lam, T.-W. (eds.) Proceedings of the 24th International Symposium on Algorithms and Computation (ISAAC). Lecture Notes in Computer Science, vol. 8283, pp. 579–589. Springer, Heidelberg (2013)Google Scholar
  34. 34.
    Peres, Y., Sotnikov, D., Sudakov, B., Zwick, U.: All-pairs shortest paths in \(O(n^2)\) time with high probability. J. ACM 60(4), 26 (2013)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Reingold, E.M., Tarjan, R.E.: On a greedy heuristic for complete matching. SIAM J. Comput. 10(4), 676–681 (1981)MATHMathSciNetCrossRefGoogle Scholar
  36. 36.
    Rosenkrantz, D.J., Stearns, R.E., Lewis II, P.M.: An analysis of several heuristics for the traveling salesman problem. SIAM J. Comput. 6(3), 563–581 (1977)MATHMathSciNetCrossRefGoogle Scholar
  37. 37.
    Ross, S.M.: Introduction to Probability Models, 10th edn. Academic Press, Burlington (2010)MATHGoogle Scholar
  38. 38.
    Supowit, K.J., Plaisted, D.A., Reingold, E.M.: Heuristics for weighted perfect matching. In: Proceedings of the 12th Annual ACM Symposium on Theory of Computing (STOC), pp. 398–419. ACM (1980)Google Scholar
  39. 39.
    Vershik, A.M.: Random metric spaces and universality. Russian Math. Surv. 59(2), 259–295 (2004)MathSciNetCrossRefGoogle Scholar
  40. 40.
    Yukich, J.E.: Probability Theory of classical euclidean optimization problems. Lecture Notes in Mathematics, vol. 1675. Springer, Heidelberg (1998)Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Karl Bringmann
    • 1
  • Christian Engels
    • 2
  • Bodo Manthey
    • 3
  • B. V. Raghavendra Rao
    • 4
  1. 1.Max Planck Institute for InformaticsSaarbrückenGermany
  2. 2.Saarland UniversitySaarbrückenGermany
  3. 3.University of TwenteEnschedeThe Netherlands
  4. 4.Indian Institute of Technology MadrasChennaiIndia

Personalised recommendations