Abstract
In the Min-Sum 2-Clustering problem, we are given a graph and a parameter k, and the goal is to determine if there exists a 2-partition of the vertex set such that the total conflict number is at most k, where the conflict number of a vertex is the number of its non-neighbors in the same cluster and neighbors in the different cluster. The problem is equivalent to 2-Cluster Editing and 2-Correlation Clustering with an additional multiplicative factor two in the cost function. In this paper we show an algorithm for Min-Sum 2-Clustering with time complexity O(n⋅2.619r/(1−4r/n)+n 3), where n is the number of vertices and r=k/n. Particularly, the time complexity is O ∗(2.619k/n) for k∈o(n 2) and polynomial for k∈O(nlogn), which implies that the problem can be solved in subexponential time for k∈o(n 2). We also design a parameterized algorithm for a variant in which the cost is the sum of the squared conflict-numbers. For k∈o(n 3), the algorithm runs in subexponential O(n 3⋅5.171θ) time, where \(\theta=\sqrt{k/n}\).
Similar content being viewed by others
References
Ailon, N., Charikar, M., Newman, A.: Aggregating inconsistent information: ranking and clustering. J. ACM 55(5), 23:1–23:27 (2008)
Bansal, N., Blum, A., Chawla, S.: Correlation clustering. Mach. Learn. 56, 89–113 (2004)
Böcker, S., Damaschke, P.: Even faster parameterized cluster deletion and cluster editing. Inf. Process. Lett. 111(14), 717–721 (2011)
Böcker, S., Briesemeister, S., Bui, Q., Truss, A.: Going weighted: parameterized algorithms for cluster editing. Theor. Comput. Sci. 410(52), 5467–5480 (2009)
Bonizzoni, P., Vedova, G.D., Dondi, R., Jiang, T.: On the approximation of correlation clustering and consensus clustering. J. Comput. Syst. Sci. 74(5), 671–696 (2008)
Bonizzoni, P., Vedova, G.D., Dondi, R.: A PTAS for the minimum consensus clustering problem with a fixed number of clusters. In: Eleventh Italian Conference on Theoretical Computer Science (2009)
Charikar, M., Guruswami, V., Wirth, A.: Clustering with qualitative information. J. Comput. Syst. Sci. 71(3), 360–383 (2005)
Chen, J., Meng, J.: A 2k kernel for the cluster editing problem. J. Comput. Syst. Sci. 78(1), 211–220 (2012)
Chen, L.H., Chang, M.S., Wang, C.C., Wu, B.Y.: On the min-max 2-cluster editing problem. J. Inf. Sci. Eng. 29(6), 1109–1120 (2013)
Damaschke, P.: Bounded-degree techniques accelerate some parameterized graph algorithms. In: Chen, J., Fomin, F. (eds.) Parameterized and Exact Computation. Lecture Notes in Computer Science, vol. 5917, pp. 98–109. Springer, Berlin (2009)
Damaschke, P.: Fixed-parameter enumerability of cluster editing and related problems. Theory Comput. Syst. 46, 261–283 (2010)
Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Berlin (1999)
Fellows, M.R., Guo, J., Komusiewicz, C., Niedermeier, R., Uhlmann, J.: Graph-based data clustering with overlaps. Discrete Optim. 8(1), 2–17 (2011)
Filkov, V., Skiena, S.: Integrating microarray data by consensus clustering. Int. J. Artif. Intell. Tools 13(04), 863–880 (2004)
Fomin, F.V., Kratsch, D.: Exact Exponential Algorithms. Springer, Berlin (2010)
Fomin, F.V., Kratsch, S., Pilipczuk, M., Pilipczuk, M., Villanger, Y.: Tight bounds for parameterized complexity of cluster editing. In: Portier, N., Wilke, T. (eds.) 30th International Symposium on Theoretical Aspects of Computer Science (STACS 2013), Leibniz International Proceedings in Informatics (LIPIcs), vol. 20, pp. 32–43. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl (2013)
Giotis, I., Guruswami, V.: Correlation clustering with a fixed number of clusters. Theory Comput. 2(13), 249–266 (2006)
Gramm, J., Guo, J., Hüffner, F., Niedermeier, R.: Graph-modeled data clustering: fixed-parameter algorithms for clique generation. In: Petreschi, R., Persiano, G., Silvestri, R. (eds.) Algorithms and Complexity. Lecture Notes in Computer Science, vol. 2653, pp. 108–119. Springer, Berlin (2003)
Gramm, J., Guo, J., Hüffner, F., Niedermeier, R.: Automated generation of search tree algorithms for hard graph modification problems. Algorithmica 39, 321–347 (2004)
Guo, J.: A more effective linear kernelization for cluster editing. Theor. Comput. Sci. 410(8–10), 718–726 (2009)
Harary, F.: On the notion of balance of a signed graph. Mich. Math. J. 2(2), 143–146 (1953)
Hüffner, F., Betzler, N., Niedermeier, R.: Optimal edge deletions for signed graph balancing. In: Demetrescu, C. (ed.) Experimental Algorithms. Lecture Notes in Computer Science, vol. 4525, pp. 297–310. Springer, Berlin (2007)
Hüffner, F., Komusiewicz, C., Moser, H., Niedermeier, R.: Fixed-parameter algorithms for cluster vertex deletion. Theory Comput. Syst. 47, 196–217 (2010)
Komusiewicz, C., Uhlmann, J.: Cluster editing with locally bounded modifications. Discrete Appl. Math. 160(15), 2259–2270 (2012)
Niedermeier, R., Rossmanith, P.: A general method to speed up fixed-parameter-tractable algorithms. Inf. Process. Lett. 73(3–4), 125–129 (2000)
Shamir, R., Sharan, R., Tsur, D.: Cluster graph modification problems. Discrete Appl. Math. 144(1–2), 173–182 (2004)
Wasserman, S., Faust, K.: Social Network Analysis: Methods and Applications vol. 8. Cambridge University Press, Cambridge (1994)
Acknowledgements
The authors would like to thank the anonymous referees for their helpful comments which improved the presentation significantly. This work was supported in part by NSC 100-2221-E-194-036-MY3 and NSC 101-2221-E-194-025-MY3 from the National Science Council, Taiwan.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Wu, B.Y., Chen, LH. Parameterized Algorithms for the 2-Clustering Problem with Minimum Sum and Minimum Sum of Squares Objective Functions. Algorithmica 72, 818–835 (2015). https://doi.org/10.1007/s00453-014-9874-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00453-014-9874-8