Skip to main content
Log in

Parameterized Algorithms for the 2-Clustering Problem with Minimum Sum and Minimum Sum of Squares Objective Functions

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

In the Min-Sum 2-Clustering problem, we are given a graph and a parameter k, and the goal is to determine if there exists a 2-partition of the vertex set such that the total conflict number is at most k, where the conflict number of a vertex is the number of its non-neighbors in the same cluster and neighbors in the different cluster. The problem is equivalent to 2-Cluster Editing and 2-Correlation Clustering with an additional multiplicative factor two in the cost function. In this paper we show an algorithm for Min-Sum 2-Clustering with time complexity O(n⋅2.619r/(1−4r/n)+n 3), where n is the number of vertices and r=k/n. Particularly, the time complexity is O (2.619k/n) for ko(n 2) and polynomial for kO(nlogn), which implies that the problem can be solved in subexponential time for ko(n 2). We also design a parameterized algorithm for a variant in which the cost is the sum of the squared conflict-numbers. For ko(n 3), the algorithm runs in subexponential O(n 3⋅5.171θ) time, where \(\theta=\sqrt{k/n}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Algorithm 1
Algorithm 2
Algorithm 3
Algorithm 4

Similar content being viewed by others

References

  1. Ailon, N., Charikar, M., Newman, A.: Aggregating inconsistent information: ranking and clustering. J. ACM 55(5), 23:1–23:27 (2008)

    Article  MathSciNet  Google Scholar 

  2. Bansal, N., Blum, A., Chawla, S.: Correlation clustering. Mach. Learn. 56, 89–113 (2004)

    Article  MATH  Google Scholar 

  3. Böcker, S., Damaschke, P.: Even faster parameterized cluster deletion and cluster editing. Inf. Process. Lett. 111(14), 717–721 (2011)

    Article  MATH  Google Scholar 

  4. Böcker, S., Briesemeister, S., Bui, Q., Truss, A.: Going weighted: parameterized algorithms for cluster editing. Theor. Comput. Sci. 410(52), 5467–5480 (2009)

    Article  MATH  Google Scholar 

  5. Bonizzoni, P., Vedova, G.D., Dondi, R., Jiang, T.: On the approximation of correlation clustering and consensus clustering. J. Comput. Syst. Sci. 74(5), 671–696 (2008)

    Article  MATH  Google Scholar 

  6. Bonizzoni, P., Vedova, G.D., Dondi, R.: A PTAS for the minimum consensus clustering problem with a fixed number of clusters. In: Eleventh Italian Conference on Theoretical Computer Science (2009)

    Google Scholar 

  7. Charikar, M., Guruswami, V., Wirth, A.: Clustering with qualitative information. J. Comput. Syst. Sci. 71(3), 360–383 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  8. Chen, J., Meng, J.: A 2k kernel for the cluster editing problem. J. Comput. Syst. Sci. 78(1), 211–220 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  9. Chen, L.H., Chang, M.S., Wang, C.C., Wu, B.Y.: On the min-max 2-cluster editing problem. J. Inf. Sci. Eng. 29(6), 1109–1120 (2013)

    MathSciNet  Google Scholar 

  10. Damaschke, P.: Bounded-degree techniques accelerate some parameterized graph algorithms. In: Chen, J., Fomin, F. (eds.) Parameterized and Exact Computation. Lecture Notes in Computer Science, vol. 5917, pp. 98–109. Springer, Berlin (2009)

    Chapter  Google Scholar 

  11. Damaschke, P.: Fixed-parameter enumerability of cluster editing and related problems. Theory Comput. Syst. 46, 261–283 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  12. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Berlin (1999)

    Book  Google Scholar 

  13. Fellows, M.R., Guo, J., Komusiewicz, C., Niedermeier, R., Uhlmann, J.: Graph-based data clustering with overlaps. Discrete Optim. 8(1), 2–17 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  14. Filkov, V., Skiena, S.: Integrating microarray data by consensus clustering. Int. J. Artif. Intell. Tools 13(04), 863–880 (2004)

    Article  Google Scholar 

  15. Fomin, F.V., Kratsch, D.: Exact Exponential Algorithms. Springer, Berlin (2010)

    Book  MATH  Google Scholar 

  16. Fomin, F.V., Kratsch, S., Pilipczuk, M., Pilipczuk, M., Villanger, Y.: Tight bounds for parameterized complexity of cluster editing. In: Portier, N., Wilke, T. (eds.) 30th International Symposium on Theoretical Aspects of Computer Science (STACS 2013), Leibniz International Proceedings in Informatics (LIPIcs), vol. 20, pp. 32–43. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl (2013)

    Google Scholar 

  17. Giotis, I., Guruswami, V.: Correlation clustering with a fixed number of clusters. Theory Comput. 2(13), 249–266 (2006)

    Article  MathSciNet  Google Scholar 

  18. Gramm, J., Guo, J., Hüffner, F., Niedermeier, R.: Graph-modeled data clustering: fixed-parameter algorithms for clique generation. In: Petreschi, R., Persiano, G., Silvestri, R. (eds.) Algorithms and Complexity. Lecture Notes in Computer Science, vol. 2653, pp. 108–119. Springer, Berlin (2003)

    Chapter  Google Scholar 

  19. Gramm, J., Guo, J., Hüffner, F., Niedermeier, R.: Automated generation of search tree algorithms for hard graph modification problems. Algorithmica 39, 321–347 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  20. Guo, J.: A more effective linear kernelization for cluster editing. Theor. Comput. Sci. 410(8–10), 718–726 (2009)

    Article  MATH  Google Scholar 

  21. Harary, F.: On the notion of balance of a signed graph. Mich. Math. J. 2(2), 143–146 (1953)

    Article  Google Scholar 

  22. Hüffner, F., Betzler, N., Niedermeier, R.: Optimal edge deletions for signed graph balancing. In: Demetrescu, C. (ed.) Experimental Algorithms. Lecture Notes in Computer Science, vol. 4525, pp. 297–310. Springer, Berlin (2007)

    Chapter  Google Scholar 

  23. Hüffner, F., Komusiewicz, C., Moser, H., Niedermeier, R.: Fixed-parameter algorithms for cluster vertex deletion. Theory Comput. Syst. 47, 196–217 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  24. Komusiewicz, C., Uhlmann, J.: Cluster editing with locally bounded modifications. Discrete Appl. Math. 160(15), 2259–2270 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  25. Niedermeier, R., Rossmanith, P.: A general method to speed up fixed-parameter-tractable algorithms. Inf. Process. Lett. 73(3–4), 125–129 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  26. Shamir, R., Sharan, R., Tsur, D.: Cluster graph modification problems. Discrete Appl. Math. 144(1–2), 173–182 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  27. Wasserman, S., Faust, K.: Social Network Analysis: Methods and Applications vol. 8. Cambridge University Press, Cambridge (1994)

    Book  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous referees for their helpful comments which improved the presentation significantly. This work was supported in part by NSC 100-2221-E-194-036-MY3 and NSC 101-2221-E-194-025-MY3 from the National Science Council, Taiwan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bang Ye Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, B.Y., Chen, LH. Parameterized Algorithms for the 2-Clustering Problem with Minimum Sum and Minimum Sum of Squares Objective Functions. Algorithmica 72, 818–835 (2015). https://doi.org/10.1007/s00453-014-9874-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-014-9874-8

Keywords

Navigation