, Volume 72, Issue 1, pp 83–98 | Cite as

Streaming Algorithms for Extent Problems in High Dimensions

  • Pankaj K. Agarwal
  • R. SharathkumarEmail author


We present (single-pass) streaming algorithms for maintaining extent measures of a stream S of n points in \(\mathbb{R} ^{d}\). We focus on designing streaming algorithms whose working space is polynomial in d (poly(d)) and sub-linear in n. For the problems of computing diameter, width and minimum enclosing ball of S, we obtain lower bounds on the worst-case approximation ratio of any streaming algorithm that uses poly(d) space. On the positive side, we introduce the notion of blurred ball cover and use it for answering approximate farthest-point queries and maintaining approximate minimum enclosing ball and diameter of S. We describe a streaming algorithm for maintaining a blurred ball cover whose working space is linear in d and independent of n.


Streaming algorithms Computational geometry Extent problems Minimum enclosing ball Diameter 


  1. 1.
    Agarwal, P.K., Har-Peled, S., Varadarajan, K.R.: Approximating extent measures of points. J. ACM 51, 606–635 (2004) CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Agarwal, P.K., Har-Peled, S., Varadarajan, K.R.: Geometric approximation via coresets. In: Goodman, J., Pach, J., Welzl, E. (eds.) Combinatorial and Computational Geometry, pp. 1–30. Cambridge University Press, Cambridge (2005) Google Scholar
  3. 3.
    Agarwal, P.K., Matoušek, J., Suri, S.: Farthest neighbors, maximum spanning trees and related problems in higher dimensions. Comput. Geom. 1, 189–201 (1992) CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Agarwal, P.K., Yu, H.: A space-optimal data-stream algorithm for coresets in the plane. In: Proceedings of 23rd Annual Symposium on Computational Geometry, pp. 1–10 (2007) Google Scholar
  5. 5.
    Aggarwal, C.: Data Streams: Models and Algorithms. Springer, Berlin (2007) CrossRefGoogle Scholar
  6. 6.
    Alon, N., Matias, Y., Szegedy, M.: The space complexity of approximating the frequency moments. J. Comput. Syst. Sci. 58, 137–147 (1999) CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Andoni, A., Croitoru, D., Patrascu, M.: Hardness of nearest neighbor under L-infinity. In: Proceedings of 49th Annual IEEE Symposium on Foundations of Computer Science, pp. 424–433 (2008) Google Scholar
  8. 8.
    Ball, K.: An elementary introduction to modern convex geometry. In: Flavors of Geometry, vol. 31, pp. 1–58 (1997) Google Scholar
  9. 9.
    Bădoiu, M., Clarkson, K.L.: Optimal core-sets for balls. Comput. Geom. 40, 14–22 (2008) CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Bădoiu, M., Har-Peled, S., Indyk, P.: Approximate clustering via core-sets. In: Proceedings of 34th Annual ACM Symposium on Theory of Computing, pp. 250–257 (2002) Google Scholar
  11. 11.
    Chan, T.M.: Approximating the diameter, width, smallest enclosing cylinder, and minimum-width annulus. Int. J. Comput. Geom. Appl. 12, 67–85 (2002) CrossRefzbMATHGoogle Scholar
  12. 12.
    Chan, T.M.: Faster core-set constructions and data-stream algorithms in fixed dimensions. Comput. Geom. 35, 20–35 (2006) CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Chan, T.M., Pathak, V.: Streaming and dynamic algorithms for minimum enclosing balls in high dimensions. In: Proceedings of 12th International Symposium on Algorithms on Data Structures, pp. 195–206 (2011) CrossRefGoogle Scholar
  14. 14.
    Chazelle, B., Edelsbrunner, H., Grigni, M., Guibas, L., Sharir, M., Welzl, E.: Improved bounds on weak ε-nets for convex sets. Discrete Comput. Geom. 13, 1–15 (1995) CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Chazelle, B., Matoušek, J.: On linear-time deterministic algorithms for optimization problems in fixed dimension. J. Algorithms 21, 579–597 (1996) CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Clarkson, K.L.: Las Vegas algorithms for linear and integer programming when the dimension is small. J. ACM 42, 488–499 (1995) CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Clarkson, K.L.: Coresets, sparse greedy approximation, and the Frank-Wolfe algorithm. In: Proceedings of 19th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 922–931 (2008) Google Scholar
  18. 18.
    Clarkson, K.L., Shor, P.W.: Applications of random sampling in computational geometry, II. Discrete Comput. Geom. 2, 195–222 (1987) CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Clarkson, K.L., Woodruff, D.P.: Numerical linear algebra in the streaming model. In: Proceedings of 41st Annual ACM Symposium on Theory of Computing, pp. 205–214 (2009) CrossRefGoogle Scholar
  20. 20.
    Gärtner, B., Jaggi, M.: Coresets for polytope distance. In: Proceedings of 25th Annual Symposium on Computational Geometry, pp. 33–42 (2009) CrossRefGoogle Scholar
  21. 21.
    Goel, A., Indyk, P., Varadarajan, K.: Reductions among high dimensional proximity problems. In: Proceedings of 12th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 769–778 (2001) Google Scholar
  22. 22.
    Har-Peled, S., Varadarajan, K.R.: Projective clustering in high dimensions using core-sets. In: Proceedings of 18th Annual Symposium on Computational Geometry, pp. 312–318 (2003) Google Scholar
  23. 23.
    Indyk, P.: Better algorithms for high-dimensional proximity problems via asymmetric embeddings. In: Proceedings of 14th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 539–545 (2003) Google Scholar
  24. 24.
    Kumar, P., Mitchell, J.S.B., Yildirim, E.A.: Approximate minimum enclosing balls in high dimensions using core-sets. ACM J. Exp. Algorithmics 8, 1.1 (2003) MathSciNetGoogle Scholar
  25. 25.
    Kumar, P., Yildirim, E.A.: Minimum-volume enclosing ellipsoids and core sets. J. Optim. Theory Appl. 126, 1–21 (2005) CrossRefzbMATHMathSciNetGoogle Scholar
  26. 26.
    Kushilevitz, E., Nisan, N.: Communication Complexity. Cambridge University Press, Cambridge (1997) CrossRefzbMATHGoogle Scholar
  27. 27.
    Matoušek, J., Sharir, M., Welzl, E.: A subexponential bound for linear programming. Algorithmica 16, 498–516 (1996) CrossRefzbMATHMathSciNetGoogle Scholar
  28. 28.
    Muthukrishnan, S.: Data Streams: Algorithms and Applications. Now Publishers, Hanover (2005) Google Scholar
  29. 29.
    Ramos, E.A.: An optimal deterministic algorithm for computing the diameter of a three-dimensional point set. Discrete Comput. Geom. 26, 233–244 (2001) CrossRefzbMATHMathSciNetGoogle Scholar
  30. 30.
    Zarrabi-Zadeh, H., Chan, T.: A simple streaming algorithm for minimum enclosing balls. In: Proceedings of 18th Annual Canadian Conference on Computational Geometry, pp. 139–142 (2006) Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Computer ScienceDuke UniversityDurhamUSA
  2. 2.Department of Computer ScienceStanford UniversityStanfordUSA

Personalised recommendations