Skip to main content
Log in

Fully Dynamic Recognition of Proper Circular-Arc Graphs

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

We present a fully dynamic algorithm for the recognition of proper circular-arc (PCA) graphs. The allowed operations on the graph involve the insertion and removal of vertices (together with its incident edges) or edges. Edge operations cost O(logn) time, where n is the number of vertices of the graph, while vertex operations cost O(logn+d) time, where d is the degree of the modified vertex. We also show incremental and decremental algorithms that work in O(1) time per inserted or removed edge. As part of our algorithm, fully dynamic connectivity and co-connectivity algorithms that work in O(logn) time per operation are obtained. Also, an O(Δ) time algorithm for determining if a PCA representation corresponds to a co-bipartite graph is provided, where Δ is the maximum among the degrees of the vertices. When the graph is co-bipartite, a co-bipartition of each of its co-components is obtained within the same amount of time. As an application, we show how to find a minimal forbidden induced subgraph of a static graph in O(n+m) time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Algorithm 1
Algorithm 2
Fig. 7
Fig. 8
Algorithm 3
Algorithm 4
Fig. 9
Algorithm 5
Algorithm 6
Fig. 10
Algorithm 7
Fig. 11
Algorithm 8
Fig. 12
Algorithm 9
Fig. 13
Algorithm 10
Algorithm 11
Algorithm 12
Algorithm 13
Fig. 14
Algorithm 14
Algorithm 15

Similar content being viewed by others

References

  1. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, third edn. MIT Press, Cambridge (2009)

    MATH  Google Scholar 

  2. Corneil, D.G.: A simple 3-sweep LBFS algorithm for the recognition of unit interval graphs. Discrete Appl. Math. 138(3), 371–379 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  3. Corneil, D.G., Kim, H., Natarajan, S., Olariu, S., Sprague, A.P.: Simple linear time recognition of unit interval graphs. Inf. Process. Lett. 55(2), 99–104 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  4. Crespelle, C.: Fully dynamic representations of interval graphs. In: Graph-Theoretic Concepts in Computer Science. Lecture Notes in Comput. Sci., vol. 5911, pp. 77–87. Springer, Berlin (2010)

    Chapter  Google Scholar 

  5. Crespelle, C., Paul, C.: Fully dynamic recognition algorithm and certificate for directed cographs. Discrete Appl. Math. 154(12), 1722–1741 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  6. Crespelle, C., Paul, C.: Fully dynamic algorithm for recognition and modular decomposition of permutation graphs. Algorithmica 58(2), 405–432 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  7. Deng, X., Hell, P., Huang, J.: Linear-time representation algorithms for proper circular-arc graphs and proper interval graphs. SIAM J. Comput. 25(2), 390–403 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  8. Eppstein, D., Galil, Z., Italiano, G.F.: Dynamic graph algorithms. In: Algorithms and Theory of Computation Handbook, pp. 1–25. CRC Press, Boca Raton (1999)

    Google Scholar 

  9. Herrera de Figueiredo, C.M., Meidanis, J., Picinin de Mello, C.: A linear-time algorithm for proper interval graph recognition. Inf. Process. Lett. 56(3), 179–184 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  10. Heggernes, P., Mancini, F.: Dynamically maintaining split graphs. Discrete Appl. Math. 157(9), 2057–2069 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  11. Hell, P., Huang, J.: Certifying LexBFS recognition algorithms for proper interval graphs and proper interval bigraphs. SIAM J. Discrete Math. 18(3), 554–570 (2004/05)

    Article  MathSciNet  Google Scholar 

  12. Hell, P., Shamir, R., Sharan, R.: A fully dynamic algorithm for recognizing and representing proper interval graphs. SIAM J. Comput. 31(1), 289–305 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  13. Huang, J.: Tournament-like oriented graphs. Ph.D. thesis, Simon Fraser University (1992). Accessed 15 February 2013 http://ir.lib.sfu.ca/handle/1892/5293

  14. Huang, J.: On the structure of local tournaments. J. Comb. Theory, Ser. B 63(2), 200–221 (1995)

    Article  MATH  Google Scholar 

  15. Ibarra, L.: Fully dynamic algorithms for chordal graphs and split graphs. ACM Trans. Algorithms 4(4), 40 (2008)

    Article  MathSciNet  Google Scholar 

  16. Ibarra, L.: A fully dynamic graph algorithm for recognizing proper interval graphs. In: WALCOM—Algorithms and Computation. Lecture Notes in Comput. Sci., vol. 5431, pp. 190–201. Springer, Berlin (2009)

    Google Scholar 

  17. Ibarra, L.: A fully dynamic graph algorithm for recognizing interval graphs. Algorithmica 58(3), 637–678 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  18. Kaplan, H., Nussbaum, Y.: Certifying algorithms for recognizing proper circular-arc graphs and unit circular-arc graphs. Discrete Appl. Math. 157(15), 3216–3230 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  19. Lekkerkerker, C.G., Boland, J.C.: Representation of a finite graph by a set of intervals on the real line. Fundam. Math. 51, 45–64 (1962/1963)

    MathSciNet  Google Scholar 

  20. Lin, M.C., Soulignac, F.J., Szwarcfiter, J.L.: A simple linear time algorithm for the isomorphism problem on proper circular-arc graphs. In: Algorithm Theory—SWAT 2008. Lecture Notes in Comput. Sci., vol. 5124, pp. 355–366. Springer, Berlin (2008)

    Chapter  Google Scholar 

  21. Lin, M.C., Soulignac, F.J., Szwarcfiter, J.L.: Normal Helly circular-arc graphs and its subclasses. Discrete Appl. Math. 161(7–8), 1037–1059 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  22. Lin, M.C., Szwarcfiter, J.L.: Characterizations and recognition of circular-arc graphs and subclasses: a survey. Discrete Math. 309(18), 5618–5635 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  23. McConnell, R.M., Mehlhorn, K., Näher, S., Schweitzer, P.: Certifying algorithms. Comput. Sci. Rev. 5(2), 119–161 (2011)

    Article  MATH  Google Scholar 

  24. Nikolopoulos, S.D., Palios, L., Papadopoulos, C.: A fully dynamic algorithm for the recognition of P 4-sparse graphs. Theor. Comput. Sci. 439, 41–57 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  25. Roberts, F.S.: Indifference graphs. In: Proof Techniques in Graph Theory (Proc. Second Ann Arbor Graph Theory Conf., Ann Arbor, Mich., 1968), pp. 139–146. Academic Press, New York (1969)

    Google Scholar 

  26. Shamir, R., Sharan, R.: A fully dynamic algorithm for modular decomposition and recognition of cographs. Discrete Appl. Math. 136(2–3), 329–340 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  27. Soulignac, F.J.: On proper and Helly circular-arc graphs. Ph.D. thesis, Universidad de Buenos Aires (2010). Accessed 15 February 2013 http://digital.bl.fcen.uba.ar/Download/Tesis/Tesis_4660_Soulignac.pdf

  28. Tarjan, R.E.: Data Structures and Network Algorithms. CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 44. SIAM, Philadelphia (1983)

    Book  Google Scholar 

  29. Tedder, M., Corneil, D.: An optimal, edges-only fully dynamic algorithm for distance-hereditary graphs. In: STACS 2007. Lecture Notes in Comput. Sci., vol. 4393, pp. 344–355. Springer, Berlin (2007)

    Chapter  Google Scholar 

  30. Tucker, A.: Structure theorems for some circular-arc graphs. Discrete Math. 7, 167–195 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  31. Yrysgul, T.: A fully dynamic algorithm for recognizing and representing chordal graphs. In: Virbitskaite, I., Voronkov, A. (eds.) Perspectives of Systems Informatics. Lecture Notes in Comput. Sci., vol. 4378, pp. 481–486. Springer, Berlin (2007)

    Chapter  Google Scholar 

Download references

Acknowledgements

The author is grateful to Min Chih Lin for pointing out that the co-components can be found in O(Δ) time, and to Jayme Szwarcfiter for asking whether the HSS algorithms can be generalized so as to recognize PHCA or PCA graphs. These were key observations for beginning the research that gave life to this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco J. Soulignac.

Additional information

This research was supported by the UBACyT Grant 20020100300048 and the PICT ANPCyT Grant 1970.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soulignac, F.J. Fully Dynamic Recognition of Proper Circular-Arc Graphs. Algorithmica 71, 904–968 (2015). https://doi.org/10.1007/s00453-013-9835-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-013-9835-7

Keywords

Navigation