Ackermann, M.R.: Algorithms for the Bregman k-Median Problem. Ph.D. Thesis, University of Paderborn (2010)
Ackermann, M.R., Blömer, J.: Coresets and approximate clustering for Bregman divergences. In: Proceedings of the Twentieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA’09, pp. 1088–1097. SIAM, Philadelphia (2009)
Chapter
Google Scholar
Ackermann, M.R., Blömer, J.: Bregman clustering for separable instances. In: Proceedings of the 12th Scandinavian Conference on Algorithm Theory, SWAT’10, pp. 212–223. Springer, Berlin (2010)
Google Scholar
Ackermann, M.R., Blömer, J., Sohler, C.: Clustering for metric and nonmetric distance measures. ACM Trans. Algorithms 6, 59 (2010)
Article
MathSciNet
Google Scholar
Aggarwal, A., Deshpande, A., Kannan, R.: Adaptive sampling for k-means clustering. In: Dinur, I., Jansen, K., Naor, J., Rolim, J. (eds.) Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques. Lecture Notes in Computer Science, vol. 5687, pp. 15–28. Springer, Berlin (2009)
Chapter
Google Scholar
Ailon, N., Jaiswal, R., Monteleoni, C.: Streaming k-means approximation. In: NIPS, pp. 10–18 (2009)
Google Scholar
Arthur, D., Manthey, B., Röglin, H.: Smoothed analysis of the k-means method. J. ACM 19, 1 (2011)
Article
Google Scholar
Arthur, D., Vassilvitskii, S.: How slow is the k-means method? In: Proceedings of the Twenty-Second Annual Symposium on Computational Geometry, SCG’06, pp. 144–153. ACM, New York (2006)
Chapter
Google Scholar
Arthur, D., Vassilvitskii, S.: k-means++: the advantages of careful seeding. In: Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA’07, pp. 1027–1035. SIAM, Philadelphia (2007)
Google Scholar
Awasthi, P., Blum, A., Sheffet, O.: Stability yields a PTAS for k-median and k-means clustering. In: Proceedings of the 51st Annual IEEE Symposium on Foundations of Computer Science, FOCS’10, pp. 309–318. IEEE Comput. Soc., Los Alamitos (2010)
Chapter
Google Scholar
Bādoiu, M., Har-Peled, S., Indyk, P.: Approximate clustering via core-sets. In: Proceedings of the Thiry-Fourth Annual ACM Symposium on Theory of Computing, STOC’02, pp. 250–257. ACM, New York (2002)
Chapter
Google Scholar
Banerjee, A., Merugu, S., Dhillon, I.S., Ghosh, J.: Clustering with Bregman divergences. J. Mach. Learn. Res. 6, 1705–1749 (2005)
MATH
MathSciNet
Google Scholar
Broder, A.Z., Glassman, S.C., Manasse, M.S., Zweig, G.: Syntactic clustering of the web. Comput. Netw. ISDN Syst. 29(8–13), 1157–1166 (1997)
Article
Google Scholar
Ke, C.: On k-median clustering in high dimensions. In: Proceedings of the Seventeenth Annual ACM-SIAM Symposium on Discrete Algorithm, SODA’06, pp. 1177–1185. ACM, New York (2006)
Google Scholar
Dasgupta, S.: The hardness of k-means clustering. Technical Report CS2008-0916, Department of Computer Science and Engineering, University of California, San Diego (2008)
Fernandez de la Vega, W., Karpinski, M., Kenyon, C., Rabani, Y.: Approximation schemes for clustering problems. In: Proceedings of the Thirty-Fifth Annual ACM Symposium on Theory of Computing, STOC’03, pp. 50–58. ACM, New York (2003)
Chapter
Google Scholar
Deerwester, S., Dumais, S.T., Furnas, G.W., Landauer, T.K., Harshman, A.R.: Indexing by latent semantic analysis. J. Am. Soc. Inf. Sci. 41, 6 (1990)
Article
Google Scholar
Faloutsos, C., Barber, R., Flickner, M., Hafner, J., Niblack, W., Petkovic, D., Equitz, W.: Efficient and effective querying by image content. J. Intell. Inf. Syst. 3(3–4), 231–262 (1994)
Article
Google Scholar
Feldman, D., Langberg, M.: A unified framework for approximating and clustering data. In: Proceedings of the 43rd Annual ACM Symposium on Theory of Computing, STOC’11, pp. 569–578. ACM, New York (2011)
Chapter
Google Scholar
Feldman, D., Monemizadeh, M., Sohler, C.: A PTAS for k-means clustering based on weak coresets. In: Proceedings of the Twenty-Third Annual Symposium on Computational Geometry, SCG’07, pp. 11–18. ACM, New York (2007)
Chapter
Google Scholar
Feldman, D., Schmidt, M., Sohler, C.: Turning big data into tiny data: Constant-size coresets for k-means, PCA and projective clustering. In: Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA’13. SIAM, Philadelphia (2013)
Google Scholar
Feldman, D., Schulman, L.J.: Data reduction for weighted and outlier-resistant clustering. In: Proceedings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms, SODA’12, pp. 1343–1354. SIAM, Philadelphia (2012)
Chapter
Google Scholar
Frahling, G., Sohler, C.: Coresets in dynamic geometric data streams. In: Proceedings of the Thirty-Seventh Annual ACM Symposium on Theory of Computing, STOC’05, pp. 209–217. ACM, New York (2005)
Chapter
Google Scholar
Har-Peled, S., Kushal, A.: Smaller coresets for k-median and k-means clustering. In: Proceedings of the Twenty-First Annual Symposium on Computational Geometry, SCG’05, pp. 126–134. ACM, New York (2005)
Chapter
Google Scholar
Har-Peled, S., Mazumdar, S.: On coresets for k-means and k-median clustering. In: Proceedings of the Thirty-Sixth Annual ACM Symposium on Theory of Computing, STOC’04, pp. 291–300. ACM, New York (2004)
Chapter
Google Scholar
Har-Peled, S., Sadri, B.: How fast is the k-means method? In: Proceedings of the Sixteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA’05, pp. 877–885. SIAM, Philadelphia (2005)
Google Scholar
Inaba, M., Katoh, N., Imai, H.: Applications of weighted Voronoi diagrams and randomization to variance-based k-clustering: (extended abstract). In: Proceedings of the Tenth Annual Symposium on Computational Geometry, SCG’94, pp. 332–339. ACM, New York (1994)
Chapter
Google Scholar
Kumar, A., Sabharwal, Y., Sen, S.: Linear-time approximation schemes for clustering problems in any dimensions. J. ACM 5(2), 1–32 (2010)
Article
MATH
MathSciNet
Google Scholar
Lloyd, S.: Least squares quantization in PCM. IEEE Trans. Inf. Theory 28(2), 129–137 (1982)
Article
MATH
MathSciNet
Google Scholar
Matoušek, J.: On approximate geometric k-clustering. Discrete Comput. Geom. 24(1), 61–84 (2000)
Article
MATH
MathSciNet
Google Scholar
Ostrovsky, R., Rabani, Y., Schulman, L.J., Swamy, C.: The effectiveness of Lloyd-type methods for the k-means problem. J. ACM 28, 1 (2013)
Google Scholar
Swain, M., Ballard, D.: Color indexing. Int. J. Comput. Vis. 7(1), 11–32 (1991)
Article
Google Scholar
Vattani, A.: k-means requires exponentially many iterations even in the plane. In: Proceedings of the 25th Annual Symposium on Computational Geometry, SCG’09, pp. 324–332. ACM, New York (2009)
Chapter
Google Scholar