Skip to main content

Advertisement

Log in

Synthetic Sequence Design for Signal Location Search

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

We present a new approach to identify the locations of critical DNA or RNA sequence signals which couples large-scale synthesis with sophisticated designs employing combinatorial group testing and balanced Gray codes. Experiments in polio and adenovirus demonstrate the efficiency and generality of this procedure. In this paper, we give a new class of consecutive positive group testing designs, which offer a better tradeoff of cost, resolution, and robustness than previous designs for signal search.

Let n denote the number of distinct regions in a sequence, and d the maximum number of consecutive positives regions which can occur. We propose a design which improves on the consecutive-positive group testing designs of Colbourn. Our design completely identifies the boundaries of the positive region using t tests, where t≈log2(1.27n/d)+0.5log2(log2(1.5n/d))+d.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Balding, D.J., Torney, D.C.: The design of pooling experiments for screening a clone map. Fungal Genet. Biol. 21(3), 302–307 (1997)

    Article  Google Scholar 

  2. Bhat, G., Savage, C.: Balanced gray codes. Electron. J. Comb. 3, R25 (1996)

    Google Scholar 

  3. Bruno, W.J., Knill, E., Balding, D.J., Bruce, D.C., Doggett, N.A., Sawhill, W.W., Stallings, R.L., Whittaker, C.C., Torney, D.C.: Efficient pooling designs for library screening. Genomics 26(1), 21–30 (1995)

    Article  Google Scholar 

  4. Bugl, H., Danner, J.P., Molinari, R.J., Mulligan, J.T., Park, H.-O., Reichert, B., Roth, D.A., Wagner, R., Budowle, B., Scripp, R.M., Smith, J.A.L., Steele, S.J., Church, G., Endy, D.: DNA synthesis and biological security. Nat. Biotechnol. 25, 627–629 (2007)

    Article  Google Scholar 

  5. Colbourn, C.J.: Group testing for consecutive positives. Ann. Comb. 3(1), 37–41 (1999)

    Article  MATH  Google Scholar 

  6. Coleman, J.R., Papamichial, D., Futcher, B., Skiena, S., Mueller, S., Wimmer, E.: Virus attenuation by genome-scale changes in codon-pair bias. Science 320, 1784–1787 (2008)

    Article  Google Scholar 

  7. Czar, M.J., Anderson, J.C., Bader, J.S., Peccoud, J.: Gene synthesis demystified. Trends Biotechnol. 27(2), 63–72 (2009)

    Article  Google Scholar 

  8. Du, D., Hwang, F.: Combinatorial Group Testing and Its Applications. World Scientific, Singapore (2000)

    MATH  Google Scholar 

  9. Du, D., Hwang, F.: Pooling Designs and Nonadaptive Group Testing: Important Tools for DNA Sequencing. World Scientific, Singapore (2006)

    Google Scholar 

  10. D’yachkov, A.G., Macula, A.J. Jr., Rykov, V.V.: New constructions of superimposed codes. IEEE Trans. Inf. Theory 46(1), 284–290 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  11. D’yachkov, A.G., Rykov, V.V.: Bounds on the length of disjunctive codes. Probl. Pereda. Inf. 18(3), 7–13 (1982)

    MathSciNet  MATH  Google Scholar 

  12. D’yachkov, A.G., Rykov, V.V., Rashad, A.M.: Superimposed distance codes. Probl. Control Inf. Theory 18(4), 237–250 (1989)

    MathSciNet  Google Scholar 

  13. Eppstein, D., Goodrich, M.T., Hirschberg, D.S.: Improved combinatorial group testing algorithms for real-world problem sizes. SIAM J. Comput. 36(5), 1360–1375 (2006)

    Article  MathSciNet  Google Scholar 

  14. Gibson, D.G., Glass, J.I., Lartigue, C., Noskov, V.N., Chuang, R.-Y., Algire, M.A., Benders, G.A., Montague, M.G., Ma, L., Moodie, M.M., Merryman, C., Vashee, S., Krishnakumar, R., Assad-Garcia, N., Andrews-Pfannkoch, C., Denisova, E.A., Young, L., Qi, Z.-Q., Segall-Shapiro, T.H., Calvey, C.H., Parmar, P.P., Hutchison, C.A., Smith, H.O., Venter, J.C.: Creation of a bacterial cell controlled by a chemically synthesized genome. Science 329(5987), 52–56 (2010)

    Article  Google Scholar 

  15. Gray, F.: Pulse code communication. US Patent 2632058 March 17, 1953

  16. Kautz, W., Singleton, R.: Nonrandom binary superimposed codes. IEEE Trans. Inf. Theory 10(4), 363–377 (1964)

    Article  MATH  Google Scholar 

  17. Knuth, D.: The Art of Computer Programming, Volume 4 Fascicle 3: Generating All Combinations and Partitions. Addison-Wesley, Reading (2005)

    Google Scholar 

  18. Lin, Y.-L., Ward, C., Jain, B., Skiena, S.: Constructing Orthogonal de Bruijn Sequences. LNCS, vol. 6844, pp. 595–606. Springer, Berlin (2011)

    Google Scholar 

  19. Macula, A.J.: A simple construction of d-disjunct matrices with certain constant weights. Discrete Math. 162(1), 311–312 (1996). doi:10.1038/nbt.1636

    Article  MathSciNet  MATH  Google Scholar 

  20. Mueller, S., Coleman, R., Papamichail, D., Ward, C., Nimnual, A., Futcher, B., Skiena, S., Wimmer, E.: Live attenuated influenza vaccines by computer-aided rational design. Nat. Biotechnol. 28 (2010)

  21. Müller, M., Jimbo, M.: Consecutive positive detectable matrices and group testing for consecutive positives. Discrete Math. 279(1–3), 369–381 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  22. Müller, M., Jimbo, M.: Cyclic sequences of k-subsets with distinct consecutive unions. Discrete Math. 308(2–3), 457–464 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  23. Pemmaraju, S., Skiena, S.: Computational Discrete Mathematics: Combinatorics and Graph Theory with Mathematica. Cambridge University Press, New York (2003)

    Book  Google Scholar 

  24. Savage, C.: A survey of combinatorial gray codes. SIAM Rev. 39, 605–629 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  25. Schlaghoff, J., Triesch, E.: Improved results for competitive group testing. Comb. Probab. Comput. 14(1–2), 191–202 (2005)

    MathSciNet  MATH  Google Scholar 

  26. Shields, I., Shields, B.J., Savage, C.D.: An update on the middle levels problem. Discrete Math. 309(17), 5271–5277 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  27. Shimada, M., Amano, K.: A note on the middle levels conjecture. (2009). Arxiv preprint. arXiv:0912.4564

  28. Sitaraman, V., Hearing, P., Ward, C., Gnatenko, D., Wimmer, E., Skiena, S., Bahou, W.: Computationally designed adeno-associated virus (AAV) Rep 78 is efficiently maintained within an adenovirus vector. Proc. Natl. Acad. Sci. 108(34), 14294–14299 (2011)

    Article  Google Scholar 

  29. Skiena, S.: Redesigning viral genomes. IEEE Comput. 45(3), 47–53 (2012)

    Article  Google Scholar 

  30. Song, Y., Liu, Y., Ward, C., Mueller, S., Futcher, B., Skiena, S., Paul, A., Wimmer, E.: Identification of cis-acting elements in the coding sequence of the poliovirus RNA polymerase using computer generated designs and synthetic DNA synthesis. Proc. Natl. Acad. Sci. 109(36), 14301–14307 (2012)

    Article  Google Scholar 

  31. Wilf, H.: Combinatorial Algorithms: An Update. SIAM, Philadelphia (1989)

    Book  Google Scholar 

Download references

Acknowledgements

We would like to thank our experimental collaborators in Wadie Bahou and Eckard Wimmer’s groups, and Ian Shields for providing the middle level Hamiltonian cycles which were used to create our group testing designs. This work was partially supported by NIH Grant AI075219 and NSF Grants DBI-1060572 and IIS-1017181.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles Ward.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, YL., Ward, C. & Skiena, S. Synthetic Sequence Design for Signal Location Search. Algorithmica 67, 368–383 (2013). https://doi.org/10.1007/s00453-013-9760-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-013-9760-9

Keywords

Navigation