Skip to main content
Log in

Computing Without Communicating: Ring Exploration by Asynchronous Oblivious Robots

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

We consider the problem of exploring an anonymous unoriented ring by a team of k identical, oblivious, asynchronous mobile robots that can view the environment but cannot communicate. This weak scenario is standard when the spatial universe in which the robots operate is the two-dimensional plane, but (with one exception) has not been investigated before for networks. Our results imply that, although these weak capabilities of robots render the problem considerably more difficult, ring exploration by a small team of robots is still possible.

We first show that, when k and n are not co-prime, the problem is not solvable in general, e.g., if k divides n there are initial placements of the robots for which gathering is impossible. We then prove that the problem is always solvable provided that n and k are co-prime, for k≥17, by giving an exploration algorithm that always terminates, starting from arbitrary initial configurations. Finally, we consider the minimum number ρ(n) of robots that can explore a ring of size n. As a consequence of our positive result we show that ρ(n) is O(logn). We additionally prove that Ω(logn) robots are necessary for infinitely many n.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. Since the ring is unoriented, agreement on only one sequence might be impossible, and the pair cannot be ordered.

References

  1. Agmon, N., Peleg, D.: Fault-tolerant gathering algorithms for autonomous mobile robots. SIAM J. Comput. 36, 56–82 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. Albers, S., Henzinger, M.R.: Exploring unknown environments. SIAM J. Comput. 29, 1164–1188 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ambühl, C., Gasieniec, L., Pelc, A., Radzik, T., Zhang, X.: Tree exploration with logarithmic memory. ACM Trans. Algorithms 7, article 17 (2011)

    Article  Google Scholar 

  4. Averbakh, I., Berman, O.: A heuristic with worst-case analysis for minimax routing of two traveling salesmen on a tree. Discrete Appl. Math. 68, 17–32 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  5. Averbakh, I., Berman, O.: (p−1)/(p+1)-approximate algorithms for p-traveling salesmen problems on a tree with minmax objective. Discrete Appl. Math. 75, 201–216 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  6. Awerbuch, B., Betke, M., Rivest, R., Singh, M.: Piecemeal graph learning by a mobile robot. In: Proceedings of the 8th Annual Conference on Computational Learning Theory (COLT 1995), pp. 321–328 (1995)

    Chapter  Google Scholar 

  7. Bender, M.A., Fernandez, A., Ron, D., Sahai, A., Vadhan, S.: The power of a pebble: exploring and mapping directed graphs. In: Proceedings of the 30th Annual ACM Symposium on the Theory of Computing (STOC 1998), pp. 269–278 (1998)

    Google Scholar 

  8. Bender, M.A., Slonim, D.: The power of team exploration: Two robots can learn unlabeled directed graphs. In: Proceedings of the 35th Annual Symposium on Foundations of Computer Science (FOCS 1994), pp. 75–85 (1994)

    Chapter  Google Scholar 

  9. Betke, M., Rivest, R., Singh, M.: Piecemeal learning of an unknown environment. Mach. Learn. 18, 231–254 (1995)

    Google Scholar 

  10. Chalopin, J., Flocchini, P., Mans, B., Santoro, N.: Network exploration by silent and oblivious robots. In: Proceedings of the 36th Int. Workshop on Graph Theoretic Concepts in Computer Science (WG 2010). LNCS, vol. 6410, pp. 208–219. Springer, Berlin (2010)

    Google Scholar 

  11. Cieliebak, M., Flocchini, P., Prencipe, G., Santoro, N.: Solving the robots gathering problem. In: Proceedings of the 30th International Colloquium on Automata, Languages and Programming (ICALP 2003). LNCS, vol. 2719, pp. 1181–1196. Springer, Berlin (2003)

    Chapter  Google Scholar 

  12. Cohen, R., Peleg, D.: Convergence properties of the gravitational algorithm in asynchronous robot systems. SIAM J. Comput. 34, 1516–1528 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  13. Cohen, R., Peleg, D.: Robot convergence via center-of-gravity algorithms. In: Proceedings of the 11th International Colloquium on Structural Information and Communication Complexity (SIROCCO 2004). LNCS, vol. 3104, pp. 79–88. Springer, Berlin (2004)

    Chapter  Google Scholar 

  14. Cooper, C., Klasing, R., Radzik, T.: Searching for black-hole faults in a network using multiple agents. In: Proceedings of the 10th International Conference on Principles of Distributed Systems (OPODIS 2006). LNCS, vol. 4288, pp. 320–332. Springer, Berlin (2006)

    Google Scholar 

  15. Czyzowicz, J., Gasieniec, L., Pelc, A.: Gathering few fat mobile robots in the plane. Theor. Comput. Sci. 410, 481–499 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Czyzowicz, J., Kowalski, D., Markou, E., Pelc, A.: Searching for a black hole in synchronous tree networks. Comb. Probab. Comput. 16, 595–619 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Das, S., Flocchini, P., Kutten, S., Nayak, A., Santoro, N.: Map construction of unknown graphs by multiple agents. Theor. Comput. Sci. 385, 34–48 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Défago, X., Souissi, S.: Non-uniform circle formation algorithm for oblivious mobile robots with convergence toward uniformity. Theor. Comput. Sci. 396, 97–112 (2008)

    Article  MATH  Google Scholar 

  19. Deng, X., Papadimitriou, C.H.: Exploring an unknown graph. J. Graph Theory 32, 265–297 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  20. Dessmark, A., Pelc, A.: Optimal graph exploration without good maps. Theor. Comput. Sci. 326, 343–362 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  21. Devismes, S.: Optimal exploration of small rings. In: Proceedings of the 3rd International ACM SIGOPS/SIGACT Workshop on Reliability, Availability, and Security (WRAS 2010), pp. 9:1–9:6 (2010)

    Google Scholar 

  22. Devismes, S., Petit, F., Tixeuil, S.: Optimal probabilistic ring exploration by semi-synchronous oblivious robots. In: Proceedings of the 16th International Colloquium on Structural Information and Communication Complexity (SIROCCO 2009). LNCS, vol. 5869, pp. 195–208. Springer, Berlin (2009)

    Chapter  Google Scholar 

  23. Diks, K., Fraigniaud, P., Kranakis, E., Pelc, A.: Tree exploration with little memory. J. Algorithms 51, 38–63 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  24. Duncan, C.A., Kobourov, S.G., Kumar, V.S.A.: Optimal constrained graph exploration. In: Proceedings of the 12th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2001), pp. 807–814 (2001)

    Google Scholar 

  25. Fleischer, R., Trippen, G.: Exploring an unknown graph efficiently. In: Proceedings of the 13th European Symposium on Algorithms (ESA 2005). LNCS, vol. 3669, pp. 11–22. Springer, Berlin (2005)

    Google Scholar 

  26. Flocchini, P., Ilcinkas, D., Pelc, A., Santoro, N.: Remembering without memory: tree exploration by asynchronous oblivious robots. Theor. Comput. Sci. 411, 1544–1557 (2010)

    Article  MathSciNet  Google Scholar 

  27. Flocchini, P., Ilcinkas, D., Pelc, A., Santoro, N.: Computing without communicating: ring exploration by asynchronous oblivious robots. In: Proceedings of the 11th International Conference on Principles of Distributed Systems (OPODIS 2007). LNCS, vol. 4878, pp. 105–118. Springer, Berlin (2007)

    Google Scholar 

  28. Flocchini, P., Ilcinkas, D., Santoro, N.: Ping-Pong in dangerous graphs: Optimal black hole search with pure tokens. Algorithmica (2011, in press)

  29. Flocchini, P., Prencipe, G., Santoro, N.: Computing by mobile robotic sensors. Chap. 3 of [37] (2011)

  30. Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Arbitrary pattern formation by asynchronous, anonymous, oblivious robots. Theor. Comput. Sci. 407, 412–447 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  31. Fraigniaud, P., Gasieniec, L., Kowalski, D., Pelc, A.: Collective tree exploration. Networks 48, 166–177 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  32. Frederickson, G.N., Hecht, M.S., Kim, C.E.: Approximation algorithms for some routing problems. SIAM J. Comput. 7, 178–193 (1978)

    Article  MathSciNet  Google Scholar 

  33. Kamei, S., Lamani, A., Ooshita, F., Tixeuil, S.: Asynchronous mobile robot gathering from symmetric configurations without global multiplicity detection. In: Proceedings of the 18th International Colloquium on Structural Information and Communication Complexity (SIROCCO 2011). LNCS, vol. 6796, pp. 150–161. Springer, Berlin (2011)

    Chapter  Google Scholar 

  34. Klasing, R., Kosowski, A., Navarra, A.: Taking advantage of symmetries: Gathering of many asynchronous oblivious robots on a ring. Theor. Comput. Sci. 411, 3235–3246 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  35. Klasing, R., Markou, E., Pelc, A.: Gathering asynchronous oblivious mobile robots in a ring. Theor. Comput. Sci. 390, 27–39 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  36. Lamani, A., Gradinariu Potop-Butucaru, M., Tixeuil, S.: Optimal deterministic ring exploration with oblivious asynchronous robots. In: Proceedings of the 17th International Colloquium on Structural Information and Communication Complexity (SIROCCO 2010). LNCS, vol. 6058, pp. 183–196. Springer, Berlin (2010)

    Chapter  Google Scholar 

  37. Nikoletseas, S., Rolim, J. (eds.): Theoretical Aspects of Distributed Computing in Sensor Networks. Springer, Berlin (2011)

    MATH  Google Scholar 

  38. Panaite, P., Pelc, A.: Exploring unknown undirected graphs. J. Algorithms 33, 281–295 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  39. Prencipe, G.: Impossibility of gathering by a set of autonomous mobile robots. Theor. Comput. Sci. 384, 222–231 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  40. Ruiz, S.M.: A result on prime numbers. Math. Gaz. 81, 269 (1997)

    Article  Google Scholar 

  41. Souissi, S., Défago, X., Yamashita, M.: Gathering asynchronous mobile robots with inaccurate compasses. In: Proceedings of the 10th International Conference on Principles of Distributed Systems (OPODIS 2006). LNCS, vol. 4305, pp. 333–349. Springer, Berlin (2006)

    Google Scholar 

  42. Suzuki, I., Yamashita, M.: Distributed anonymous mobile robots: formation of geometric patterns. SIAM J. Comput. 28, 1347–1363 (1999)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgement

This work was done during the stay of David Ilcinkas at the Research Chair in Distributed Computing at the Université du Québec en Outaouais and at the University of Ottawa, as a postdoctoral fellow. Andrzej Pelc was partially supported by the Research Chair in Distributed Computing at the Université du Québec en Outaouais, Paola Flocchini was partially supported by the University Research Chair of the University of Ottawa. This work was supported in part by the Natural Sciences and Engineering Research Council of Canada under Discovery grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Ilcinkas.

Additional information

A preliminary version of this paper appeared in [27].

Rights and permissions

Reprints and permissions

About this article

Cite this article

Flocchini, P., Ilcinkas, D., Pelc, A. et al. Computing Without Communicating: Ring Exploration by Asynchronous Oblivious Robots. Algorithmica 65, 562–583 (2013). https://doi.org/10.1007/s00453-011-9611-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-011-9611-5

Keywords

Navigation