, Volume 65, Issue 1, pp 159–176 | Cite as

Exponential Inapproximability of Selecting a Maximum Volume Sub-matrix

  • Ali Çivril
  • Malik Magdon-Ismail


Given a matrix A∈ℝ m×n (n vectors in m dimensions), and a positive integer k<n, we consider the problem of selecting k column vectors from A such that the volume of the parallelepiped they define is maximum over all possible choices. We prove that there exists δ<1 and c>0 such that this problem is not approximable within 2ck for k=δn, unless P=NP.


Matrices Volume Complexity Inapproximability 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arora, S., Lund, C., Motwani, R., Sudan, M., Szegedy, M.: Proof verification and the hardness of approximation problems. J. ACM 45(3), 501–555 (1998) MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Arora, S., Safra, S.: Probabilistic checking of proofs: a new characterization of NP. J. ACM 45(1), 70–122 (1998) MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Boutsidis, C., Drineas, P., Magdon-Ismail, M.: Near-optimal column based matrix reconstruction. (2011). arXiv:1103.0995v1
  4. 4.
    Boutsidis, C., Mahoney, M.W., Drineas, P.: An improved approximation algorithm for the column subset selection problem. In: SODA’09: Proceedings of the 19th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 968–977 (2009) Google Scholar
  5. 5.
    Chan, T.F.: Rank revealing QR factorizations. Linear Algebra Appl. 88/89, 67–82 (1987) CrossRefGoogle Scholar
  6. 6.
    Chan, T.F., Hansen, P.: Low-rank revealing QR factorizations. Numer. Linear Algebra Appl. 1, 33–44 (1994) MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Chandrasekaran, S., Ipsen, I.C.F.: On rank-revealing factorizations. SIAM J. Matrix Anal. Appl. 15, 592–622 (1994) MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Çivril, A., Magdon-Ismail, M.: On selecting a maximum volume sub-matrix of a matrix and related problems. Theor. Comput. Sci. 410(47–49), 4801–4811 (2009) MATHCrossRefGoogle Scholar
  9. 9.
    de Hoog, F.R., Mattheijb, R.M.M.: Subset selection for matrices. Linear Algebra Appl. 422, 349–359 (2007) MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Deshpande, A., Rademacher, L.: Efficient volume sampling for row/column subset selection. In: FOCS’10: Proceedings of 51st Annual Symposium on Foundations of Computer Science, pp. 329–338 (2010) CrossRefGoogle Scholar
  11. 11.
    Deshpande, A., Rademacher, L., Vempala, S., Wang, G.: Matrix approximation and projective clustering via volume sampling. Theory Comput. 2(1), 225–247 (2006) MathSciNetCrossRefGoogle Scholar
  12. 12.
    Deshpande, A., Vempala, S.: Adaptive sampling and fast low-rank matrix approximation. In: RANDOM’06: 10th International Workshop on Randomization and Computation, pp. 292–303 (2006) Google Scholar
  13. 13.
    Feige, U.: A threshold of lnn for approximating set cover. J. ACM 45(4), 634–652 (1998) MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Golub, G.H., Klema, V., Stewart, G.W.: Rank degeneracy and least squares problems. Technical report, Dept. of Computer Science, Univ. of Maryland, 1976 Google Scholar
  15. 15.
    Golub, G.H., Loan, C.V.: Matrix Computations. Johns Hopkins University Press, Baltimore (1996) MATHGoogle Scholar
  16. 16.
    Goreinov, S.A., Tyrtyshnikov, E.E.: The maximal-volume concept in approximation by low-rank matrices. In: Contemporary Mathematics, vol. 280, pp. 47–51. AMS, Providence (2001) Google Scholar
  17. 17.
    Goreinov, S.A., Zamarashkin, N.L., Tyrtyshnikov, E.E.: Pseudo-skeleton approximations by matrices of maximal volume. Mat. Zametki 62, 619–623 (1997) MathSciNetCrossRefGoogle Scholar
  18. 18.
    Gritzmann, P., Klee, V., Larman, D.G.: Largest j-simplices n-polytopes. Discrete Comput. Geom. 13, 477–515 (1995) MathSciNetMATHCrossRefGoogle Scholar
  19. 19.
    Gu, M., Eisenstat, S.C.: Efficient algorithms for computing a strong rank-revealing QR factorization. SIAM J. Sci. Comput. 17(4), 848–869 (1996) MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Hazan, E., Safra, S., Schwartz, O.: On the complexity of approximating k-set packing. Comput. Complex. 15, 20–39 (2006) MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Hong, Y.P., Pan, C.T.: Rank-revealing QR factorizations and the singular value decomposition. Math. Comput. 58, 213–232 (1992) MathSciNetMATHGoogle Scholar
  22. 22.
    Koutis, I.: Parameterized complexity and improved inapproximability for computing the largest j-simplex in a V-polytope. Inf. Process. Lett. 100, 8–13 (2006) MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    Packer, A.: Polynomial-time approximation of largest simplices in V-polytopes. Discrete Appl. Math. 134, 213–237 (2004) MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    Pan, C.T.: On the existence and computation of rank-revealing LU factorizations. Linear Algebra Appl. 316(1–3), 199–222 (2000) MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    Pan, C.T., Tang, P.T.P.: Bounds on singular values revealed by QR factorizations. BIT Numer. Math. 39, 740–756 (1999) MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    Raz, R.: A parallel repetition theorem. SIAM J. Comput. 27(3), 763–803 (1998) MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Computer Engineering DepartmentMelikşah UniversityKayseriTurkey
  2. 2.Computer Science DepartmentRensselaer Polytechnic InstituteTroyUSA

Personalised recommendations