Algorithmica

, Volume 63, Issue 4, pp 861–882 | Cite as

f-Sensitivity Distance Oracles and Routing Schemes

  • Shiri Chechik
  • Michael Langberg
  • David Peleg
  • Liam Roditty
Article

Abstract

An f-sensitivity distance oracle for a weighted undirected graph G(V,E) is a data structure capable of answering restricted distance queries between vertex pairs, i.e., calculating distances on a subgraph avoiding some forbidden edges. This paper presents an efficiently constructible f-sensitivity distance oracle that given a triplet (s,t,F), where s and t are vertices and F is a set of forbidden edges such that |F|≤f, returns an estimate of the distance between s and t in G(V,EF). For an integer parameter k≥1, the size of the data structure is O(fkn1+1/klog (nW)), where W is the heaviest edge in G, the stretch (approximation ratio) of the returned distance is (8k−2)(f+1), and the query time is O(|F|⋅log 2n⋅log log n⋅log log d), where d is the distance between s and t in G(V,EF).

Our result differs from previous ones in two major respects: (1) it is the first to consider approximate oracles for general graphs (and thus obtain a succinct data structure); (2) our result holds for an arbitrary number of forbidden edges. In contrast, previous papers concern f-sensitive exact distance oracles, which consequently have size Ω(n2). Moreover, those oracles support forbidden sets F of size |F|≤2.

The paper also considers f-sensitive compact routing schemes, namely, routing schemes that avoid a given set of forbidden (or failed) edges. It presents a scheme capable of withstanding up to two edge failures. Given a message M destined to t at a source vertex s, in the presence of a forbidden edge set F of size |F|≤2 (unknown to s), our scheme routes M from s to t in a distributed manner, over a path of length at most O(k) times the length of the optimal path (avoiding F). The total amount of information stored in vertices of G is O(kn1+1/klog (nW)log n). To the best of our knowledge, this is the first result obtaining an f-sensitive compact routing scheme for general graphs.

Keywords

Distance oracle Routing scheme Fault-tolerance Forbidden edges Sensitivity Stretch 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Afek, Y., Attiya, H., Fekete, A., Fischer, M.J., Lynch, N., Mansour, Y., Wang, D., Zuck, L.D.: Reliable communication over unreliable channels. J. ACM 41, 1267–1297 (1994) MathSciNetCrossRefGoogle Scholar
  2. 2.
    Afek, Y., Awerbuch, B., Gafni, E., Mansour, Y., Rosen, A., Shavit, N.: Slide-the key to polynomial end-to-end communication. J. Algorithms 22, 158–186 (1997) MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Aingworth, D., Chekuri, C., Indyk, P., Motwani, R.: Fast estimation of diameter and shortest paths (without matrix multiplication). SIAM J. Comput. 28(4), 1167–1181 (1999) MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Awerbuch, B., Even, S.: Efficient and reliable broadcast is achievable in an eventually connected network. In: Proc. 3rd ACM Symp. on Principles of Distributed Computing (PODC), pp. 278–281 (1984) CrossRefGoogle Scholar
  5. 5.
    Awerbuch, B., Peleg, D.: Sparse partitions. In: Proc. 31st IEEE Symp. on Foundations of Computer Science, pp. 503–513 (1990) Google Scholar
  6. 6.
    Awerbuch, B., Bar-Noy, A., Linial, N., Peleg, D.: Improved routing strategies with succinct tables. J. Algorithms 307–341 (1990) Google Scholar
  7. 7.
    Awerbuch, B., Kutten, S., Peleg, D.: On buffer-economical store-and-forward deadlock prevention. In: Proc. INFOCOM, pp. 410–414 (1991) Google Scholar
  8. 8.
    Bagchi, A., Hakimi, S.L.: Information dissemination in distributed systems with faulty units. IEEE Trans. Comput. 43, 698–710 (1994) MATHCrossRefGoogle Scholar
  9. 9.
    Bao, F., Igarashi, Y., Katano, K.: Broadcasting in hypercubes with randomly distributed byzantine faults. In: Proc. WDAG’95, pp. 215–229 (1995) Google Scholar
  10. 10.
    Baswana, S., Kavitha, T.: Faster algorithms for approximate distance oracles and all-pairs small stretch paths. In: Proc. IEEE Symp. on Foundations of Computer Science, pp. 591–602 (2006) Google Scholar
  11. 11.
    Baswana, S., Sen, S.: A simple linear time algorithm for computing sparse spanners in weighted graphs. In: Proc. 30th Int. Colloq. on Automata, Languages and Programming, pp. 384–396 (2003) CrossRefGoogle Scholar
  12. 12.
    Baswana, S., Sen, S.: Approximate distance oracles for unweighted graphs in expected O(n 2) time. ACM Trans. Algorithms 2(4), 557–577 (2006) MathSciNetCrossRefGoogle Scholar
  13. 13.
    Berman, P., Diks, K., Pelc, A.: Reliable broadcasting in logarithmic time with byzantine link failures. J. Algorithms 22, 199–211 (1997) MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Bernstein, A., Karger, D.: Improved distance sensitivity oracles via random sampling. In: Proc. 19th ACM-SIAM Symp. on Discrete Algorithms (SODA), pp. 34–43 (2008) Google Scholar
  15. 15.
    Bernstein, A., Karger, D.: A nearly optimal oracle for avoiding failed vertices and edges. In: Proc. 41st ACM Symp. on Theory of Computing (STOC), pp. 101–110 (2009) CrossRefGoogle Scholar
  16. 16.
    Blough, D., Pelc, A.: Optimal communication in networks with randomly distributed byzantine faults. Networks 23, 691–701 (1993) MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Chechik, S., Langberg, M., Peleg, D., Roditty, L.: Fault-tolerant spanners for general graphs. SIAM J. Comput. 37(7), 3403–3423 (2010) MathSciNetCrossRefGoogle Scholar
  18. 18.
    Cohen, E.: Fast algorithms for constructing t-spanners and paths with stretch t. In: Proc. IEEE Symp. on Foundations of Computer Science, pp. 648–658 (1993) Google Scholar
  19. 19.
    Courcelle, B., Twigg, A.: Compact forbidden-set routing. In: Proc. STACS, pp. 37–48 (2007) Google Scholar
  20. 20.
    Cowen, L.J.: Compact routing with minimum stretch. J. Algorithms 38, 170–183 (2001) MathSciNetMATHCrossRefGoogle Scholar
  21. 21.
    Demetrescu, C., Italiano, G.F.: Experimental analysis of dynamic all pairs shortest path algorithms. In: Proc. 15th SODA, pp. 362–371 (2004) Google Scholar
  22. 22.
    Demetrescu, C., Thorup, M., Chowdhury, R., Ramachandran, V.: Oracles for distances avoiding a failed node or link. SIAM J. Comput. 37(5), 1299–1318 (2008) MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    Diks, K., Pelc, A.: Almost safe gossiping in bounded degree networks. SIAM J. Discrete Math. 5, 338–344 (1992) MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    Dolev, D.: The byzantine generals strike again. J. Algorithms 3, 14–30 (1982) MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    Dor, D., Halperin, S., Zwick, U.: All-pairs almost shortest paths. SIAM J. Comput. 29(5), 1740–1759 (2000) MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    Duan, R., Pettie, S.: Dual-failure distance and connectivity oracles. In: Proc. SODA (2009) Google Scholar
  27. 27.
    Eilam, T., Gavoille, C., Peleg, D.: Compact routing schemes with low stretch factor. J. Algorithms 46, 97–114 (2003) MathSciNetMATHCrossRefGoogle Scholar
  28. 28.
    Elkin, M.: Computing almost shortest paths. ACM Trans. Algorithms 1(2), 283–323 (2005) MathSciNetCrossRefGoogle Scholar
  29. 29.
    Eppstein, D., Galil, Z., Italiano, G.F., Nissenzweig, N.: Sparsification—A technique for speeding up dynamic graph algorithms. J. ACM 44 (1997) Google Scholar
  30. 30.
    Fekete, A.D., Lynch, N., Mansour, Y., Spinelli, J.: The impossibility of implementing reliable communication in the face of crashes. J. ACM 40, 1087–1107 (1993) MathSciNetMATHCrossRefGoogle Scholar
  31. 31.
    Fraigniaud, P., Gavoille, C.: Memory requirement for universal routing schemes. In: Proc. 14th ACM Symp. on Principles of Distributed Computing, pp. 223–230 (1995) Google Scholar
  32. 32.
    Gafni, E., Afek, Y.: End-to-end communication in unreliable networks. In: Proc. 7th ACM Symp. on Principles of Distributed Computing (PODC), pp. 131–148 (1988) CrossRefGoogle Scholar
  33. 33.
    Gavoille, C., Gengler, M.: Space-efficiency for routing schemes of stretch factor three. J. Parallel Distrib. Comput. 61, 679–687 (2001) MATHCrossRefGoogle Scholar
  34. 34.
    Gavoille, C., Peleg, D.: Compact and localized distributed data structures. Distrib. Comput. 16, 111–120 (2003) CrossRefGoogle Scholar
  35. 35.
    Goldreich, O., Herzberg, A., Mansour, Y.: Source to destination communication in the presence of faults. In: Proc 7th ACM Symp. on Principles of Distributed Computing (PODC), pp. 85–101 (1989) Google Scholar
  36. 36.
    Herzberg, A., Kutten, S.: Fast isolation of arbitrary forwarding faults. In: Proc. 8th ACM Symp. on Principles of Distributed Computing (PODC), pp. 339–353 (1989) CrossRefGoogle Scholar
  37. 37.
    Holm, J., de Lichtenberg, K., Thorup, M.: Poly-logarithmic deterministic fully-dynamic algorithms for connectivity, minimum spanning tree, 2-edge, and biconnectivity. J. ACM 48(4), 723–760 (2001) MathSciNetMATHCrossRefGoogle Scholar
  38. 38.
    Kavitha, T.: Faster algorithms for all-pairs small stretch distances in weighted graphs. In: Proc. FSTTCS, pp. 328–339 (2007) Google Scholar
  39. 39.
    Khanna, N., Baswana, S.: Approximate shortest paths oracle handling single vertex failure. In: Proc. STACS (2010) Google Scholar
  40. 40.
    Kučera, L.: Broadcasting through a noisy one-dimensional network. Technical Report MPI-I-93-106, Max-Planck-Institut, Saarbruecken, Germany (1993) Google Scholar
  41. 41.
    Nagamochi, H., Ibaraki, T.: Linear time algorithms for finding a sparse k-connected spanning subgraph of a k-connected graph. Algorithmica 7, 583–596 (1992) MathSciNetMATHCrossRefGoogle Scholar
  42. 42.
    Pǎtraşcu, M., Thorup, M.: Planning for fast connectivity updates. In: Proc. 48th IEEE Symposium on Foundations of Computer Science (FOCS), pp. 263–271 (2007) Google Scholar
  43. 43.
    Pelc, A.: Fault-tolerant broadcasting and gossiping in communication networks. Networks 28, 143–156 (1996) MathSciNetMATHCrossRefGoogle Scholar
  44. 44.
    Pelc, A., Peleg, D.: Feasibility and complexity of broadcasting with random transmission failures. Theor. Comput. Sci. 370, 279–292 (2007) MathSciNetMATHCrossRefGoogle Scholar
  45. 45.
    Peleg, D.: Distributed Computing: A Locality-Sensitive Approach. SIAM, Philadelphia (2000) MATHCrossRefGoogle Scholar
  46. 46.
    Peleg, D., Ullman, J.D.: An optimal synchronizer for the hypercube. SIAM J. Comput. 18(4), 740–747 (1989) MathSciNetMATHCrossRefGoogle Scholar
  47. 47.
    Peleg, D., Upfal, E.: A trade-off between space and efficiency for routing tables. J. ACM 36(3), 510–530 (1989) MathSciNetMATHCrossRefGoogle Scholar
  48. 48.
    Roditty, L., Zwick, U.: A fully dynamic reachability algorithm for directed graphs with an almost linear update time. In: Proc. 36th STOC, pp. 184–191 (2004) Google Scholar
  49. 49.
    Roditty, L., Thorup, M., Zwick, U.: Deterministic constructions of approximate distance oracles and spanners. In: Proc. 32nd ICALP, pp. 261–272 (2005) Google Scholar
  50. 50.
    Roditty, L., Thorup, M., Zwick, U.: Roundtrip spanners and roundtrip routing in directed graphs. ACM Trans. Algorithms 4(3), 1–17 (2008) MathSciNetCrossRefGoogle Scholar
  51. 51.
    Thorup, M.: Fully-dynamic all-pairs shortest paths: Faster and allowing negative cycles. In: Proc. 9th SWAT, pp. 384–396 (2004) Google Scholar
  52. 52.
    Thorup, M.: Worst-case update times for fully-dynamic all-pairs shortest paths. In: Proc. 37th ACM Symp. on Theory of Computing (STOC), pp. 112–119 (2005) Google Scholar
  53. 53.
    Thorup, M., Zwick, U.: Compact routing schemes. In: Proc. 13th ACM Symp. on Parallel Algorithms and Architectures (SPAA), pp. 1–10 (2001) Google Scholar
  54. 54.
    Thorup, M., Zwick, U.: Approximate distance oracles. J. ACM 52(1), 1–24 (2005) MathSciNetMATHCrossRefGoogle Scholar
  55. 55.
    Thurimella, R.: Techniques for the design of parallel graph algorithms. PhD thesis, Univ. of Texas, Austin (1989) Google Scholar
  56. 56.
    Twigg, A.: Compact forbidden-set routing. PhD thesis, Cambridge University (2006) Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Shiri Chechik
    • 1
  • Michael Langberg
    • 2
  • David Peleg
    • 1
  • Liam Roditty
    • 3
  1. 1.Dept. of Computer Science and Applied Math.The Weizmann InstituteRehovotIsrael
  2. 2.Computer Science DivisionOpen University of IsraelRaananaIsrael
  3. 3.Department of Computer ScienceBar-Ilan UniversityRamat-GanIsrael

Personalised recommendations