, Volume 62, Issue 3–4, pp 1034–1049 | Cite as

A Constant-Approximate Feasibility Test for Multiprocessor Real-Time Scheduling

  • Vincenzo Bonifaci
  • Alberto Marchetti-Spaccamela
  • Sebastian Stiller


We devise an approximate feasibility test for multiprocessor real-time scheduling in the sporadic task model. We give an algorithm that, given a task system and ε>0, correctly decides either that the task system can be scheduled using the Earliest Deadline First algorithm on m speed-(2−1/m+ε) machines, or that the system is not schedulable by any algorithm on m unit speed machines. This speedup bound is known to be the best possible for EDF. The running time of the algorithm is polynomial in the size of the task system and 1/ε. We also provide a generalized tight bound that trades off speed with additional machines.


Sporadic task system Multiprocessor Real-time scheduling Feasibility test Earliest Deadline First Approximation algorithm 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Albers, K., Slomka, F.: An event stream driven approximation for the analysis of real-time systems. In: Proceedings of the 16th Euromicro Conference on Real-Time Systems, pp. 187–195. IEEE Press, New York (2004) CrossRefGoogle Scholar
  2. 2.
    Albers, K., Slomka, F.: Efficient feasibility analysis for real-time systems with EDF scheduling. In: Proceedings of the Conference on Design, Automation and Test in Europe, pp. 492–497. IEEE Press, New York (2005) Google Scholar
  3. 3.
    Baker, T.P.: An analysis of EDF schedulability on a multiprocessor. IEEE Trans. Parallel Distrib. Syst. 16(8), 760–768 (2005) CrossRefGoogle Scholar
  4. 4.
    Baker, T.P., Baruah, S.K.: Schedulability analysis of multiprocessor sporadic task systems. In: Son, S.H., Lee, I., Leung, J.Y.T. (eds.) Handbook of Real-Time and Embedded Systems. CRC Press, Boca Raton (2007). Chapter 3 Google Scholar
  5. 5.
    Baker, T.P., Baruah, S.K.: An analysis of global EDF schedulability for arbitrary-deadline sporadic task systems. Real-Time Syst. 43(1), 3–24 (2009) CrossRefzbMATHGoogle Scholar
  6. 6.
    Baruah, S.K., Baker, T.P.: Schedulability analysis of global EDF. Real-Time Syst. 38(3), 223–235 (2008) CrossRefzbMATHGoogle Scholar
  7. 7.
    Baruah, S.K., Howell, R.R., Rosier, L.E.: Feasibility problems for recurring tasks on one processor. Theor. Comput. Sci. 118(1), 3–20 (1993) CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Bonifaci, V., Chan, H.-L., Marchetti-Spaccamela, A., Megow, N.: Algorithms and complexity for periodic real-time scheduling. In: Charikar, M. (ed.) Proceedings of the 21st Symposium on Discrete Algorithms, pp. 1350–1359. SIAM, Philadelphia (2010) Google Scholar
  9. 9.
    Chakraborty, S., Künzli, S., Thiele, L.: Approximate schedulability analysis. In: Proceedings of the 23rd Real-Time Systems Symposium, pp. 159–168. IEEE Press, New York (2002) Google Scholar
  10. 10.
    Dertouzos, M.L.: Control robotics: The procedural control of physical processes. In: Proceedings of the International Federation for Information Processing Congress, pp. 807–813. North-Holland, Amsterdam (1974) Google Scholar
  11. 11.
    Eisenbrand, F., Rothvoß, T.: A PTAS for static priority real-time scheduling with resource augmentation. In: Proceedings of the 35th International Colloquium on Automata, Languages and Programming, pp. 246–257. Springer, Berlin (2008) CrossRefGoogle Scholar
  12. 12.
    Eisenbrand, F., Rothvoß, T.: EDF-schedulability of synchronous periodic task systems is coNP-hard. In: Proceedings of the 21st Symposium on Discrete Algorithms, pp. 1029–1034. SIAM, Philadelphia (2010) Google Scholar
  13. 13.
    Fisher, N., Baruah, S.K.: A fully polynomial-time approximation scheme for feasibility analysis in static-priority systems with arbitrary relative deadlines. In: Proceedings of the 17th Euromicro Conference on Real-Time Systems, pp. 117–126. IEEE Press, New York (2005) Google Scholar
  14. 14.
    Fisher, N., Goossens, J., Baruah, S.K.: Optimal online multiprocessor scheduling of sporadic real-time tasks is impossible. Real-Time Syst. 45(1), 26–71 (2010) CrossRefzbMATHGoogle Scholar
  15. 15.
    Lam, T.W., To, K.-K.: Trade-offs between speed and processor in hard-deadline scheduling. In: Proceedings of the 10th Symposium on Discrete Algorithms, pp. 623–632. SIAM, Philadelphia (1999) Google Scholar
  16. 16.
    Leung, J.Y.-T., Merrill, M.L.: A note on preemptive scheduling of periodic, real-time tasks. Inf. Process. Lett. 11(3), 115–118 (1980) CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Liu, C.L., Layland, J.W.: Scheduling algorithms for multiprogramming in a hard-real-time environment. J. ACM 20(1), 46–61 (1973) CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Phillips, C.A., Stein, C., Torng, E., Wein, J.: Optimal time-critical scheduling via resource augmentation. Algorithmica 32(2), 163–200 (2002) CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Srinivasan, A., Anderson, J.H.: Optimal rate-based scheduling on multiprocessors. J. Comput. Syst. Sci. 72(6), 1094–1117 (2006) CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Vincenzo Bonifaci
    • 1
  • Alberto Marchetti-Spaccamela
    • 2
  • Sebastian Stiller
    • 3
  1. 1.Max-Planck Institut für InformatikSaarbrückenGermany
  2. 2.Sapienza Università di RomaRomeItaly
  3. 3.Technische Universität BerlinBerlinGermany

Personalised recommendations