Skip to main content
Log in

Shortest Paths in Time-Dependent FIFO Networks

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

In this paper, we study the time-dependent shortest paths problem for two types of time-dependent FIFO networks. First, we consider networks where the availability of links, given by a set of disjoint time intervals for each link, changes over time. Here, each interval is assigned a non-negative real value which represents the travel time on the link during the corresponding interval. The resulting shortest path problem is the time-dependent shortest path problem for availability intervals (\(\mathcal{TDSP}_{\mathrm{int}}\)), which asks to compute all shortest paths to any (or all) destination node(s) d for all possible start times at a given source node s. Second, we study time-dependent networks where the cost of using a link is given by a non-decreasing piece-wise linear function of a real-valued argument. Here, each piece-wise linear function represents the travel time on the link based on the time when the link is used. The resulting shortest paths problem is the time-dependent shortest path problem for piece-wise linear functions (\(\mathcal{TDSP}_{\mathrm{lin}}\)) which asks to compute, for a given source node s and destination d, the shortest paths from s to d, for all possible starting times.

We present an algorithm for the \(\mathcal{TDSP}_{\mathrm{lin}}\) problem that runs in time O((F d +γ)(|E|+|V|log |V|)) where F d is the output size (i.e., number of linear pieces needed to represent the earliest arrival time function to d) and γ is the input size (i.e., number of linear pieces needed to represent the local earliest arrival time functions for all links in the network). We then solve the \(\mathcal{TDSP}_{\mathrm{int}}\) problem in O(λ(|E|+|V|log |V|)) time by reducing it to an instance of the \(\mathcal{TDSP}_{\mathrm{lin}}\) problem. Here, λ denotes the total number of availability intervals in the entire network. Both methods improve significantly on the previously known algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agarwal, P.K., Schwarzkopf, O., Sharir, M.: The overlay of lower envelopes and its applications. Discrete Comput. Geom. 15(1), 1–13 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  2. Ahuja, R.K., Orlin, J.B., Pallottino, S., Scutellà, M.G.: Minimum time and minimum cost-path problems in street networks with periodic traffic lights. Transp. Sci. 36(3), 326–336 (2002)

    Article  MATH  Google Scholar 

  3. Bertsekas, D.P.: A simple and fast label correcting algorithm for shortest paths. Networks 23(7), 703–709 (1993)

    Article  MATH  Google Scholar 

  4. Brodal, G.S., Jacob, R.: Time-dependent networks as models to achieve fast exact time-table queries. Electron. Notes Theor. Comput. Sci. 92, 3–15 (2004)

    Article  Google Scholar 

  5. Chon, H.D., Agrawal, D., El Abbadi, A.: Fates: finding a time dependent shortest path. In: MDM ’03: Proceedings of the 4th International Conference on Mobile Data Management, pp. 165–180. Springer, London (2003)

    Google Scholar 

  6. Cooke, K.L., Halsey, E.: The shortest route through a network with time-dependent internodal transit times. J. Math. Anal. Appl. 14(3), 493–498 (1966)

    Article  MATH  MathSciNet  Google Scholar 

  7. Cormen, T.H., Stein, C., Rivest, R.L., Leiserson, C.E.: Introduction to Algorithms. McGraw-Hill Higher Education, New York (2001)

    MATH  Google Scholar 

  8. Daganzo, C.F.: Reversibility of the time-dependent shortest path problem. Transp. Res., Part B, Methodol. 36(7), 665–668 (2002)

    Article  Google Scholar 

  9. Dean, B.C.: Continuous-time dynamic shortest path algorithms. Master’s thesis, MIT Department of Computer Science (1999)

  10. Dean, B.C.: Shortest paths in FIFO time-dependent networks: theory and algorithms. Technical report, MIT Department of Computer Science (2004)

  11. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numer. Math. 1(1), 269–271 (1959)

    Article  MATH  MathSciNet  Google Scholar 

  12. Ding, B., Yu, J.X., Qin, L.: Finding time-dependent shortest paths over large graphs. In EDBT, pp. 205–216 (2008)

  13. Fredman, M.L., Tarjan, R.E.: Fibonacci heaps and their uses in improved network optimization algorithms. J. ACM 34(3), 596–615 (1987)

    Article  MathSciNet  Google Scholar 

  14. Hart, P.E., Nilsson, N.J., Raphael, B.: A formal basis for the heuristic determination of minimum cost paths. IEEE Trans. Syst. Sci. Cybern. 4(2), 100–107 (1968)

    Article  Google Scholar 

  15. Henzinger, M.R., Klein, P.N., Rao, S., Subramanian, S.: Faster shortest-path algorithms for planar graphs. J. Comput. Syst. Sci. 55(1), 3–23 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  16. Kanoulas, E., Du, Y., Xia, T., Zhang, D.: Finding fastest paths on a road network with speed patterns. In: ICDE ’06: Proceedings of the 22nd International Conference on Data Engineering, p. 10. IEEE Computer Society, Washington (2006)

    Google Scholar 

  17. Nachtigall, K.: Time depending shortest-path problems with applications to railway networks. Eur. J. Oper. Res. 83(1), 154–166 (1995)

    Article  MATH  Google Scholar 

  18. Orda, A., Rom, R.: Shortest-path and minimum-delay algorithms in networks with time-dependent edge-length. J. ACM 37(3), 607–625 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  19. Orda, A., Rom, R.: Minimum weight paths in time-dependent networks. Networks 21, 295–319 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  20. Sharir, M., Agarwal, P.K.: Davenport-Schinzel Sequences and Their Geometric Applications. Cambridge University Press, New York (1996)

    Google Scholar 

  21. Sung, K., Bell, M.G.H., Seong, M., Park, S.: Shortest paths in a network with time-dependent flow speeds. Eur. J. Oper. Res. 121(1), 32–39 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  22. Thorup, M.: Undirected single-source shortest paths with positive integer weights in linear time. J. ACM 46(3), 362–394 (1999)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörg-Rüdiger Sack.

Additional information

Research supported by NSERC, SUN Microsystems of Canada and HPCVL.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dehne, F., Omran, M.T. & Sack, JR. Shortest Paths in Time-Dependent FIFO Networks. Algorithmica 62, 416–435 (2012). https://doi.org/10.1007/s00453-010-9461-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-010-9461-6

Keywords

Navigation