, Volume 61, Issue 3, pp 738–757 | Cite as

Bounded Unpopularity Matchings

  • Chien-Chung Huang
  • Telikepalli Kavitha
  • Dimitrios Michail
  • Meghana Nasre


We investigate the following problem: given a set of jobs and a set of people with preferences over the jobs, what is the optimal way of matching people to jobs? Here we consider the notion of popularity. A matching M is popular if there is no matching M′ such that more people prefer M′ to M than the other way around. Determining whether a given instance admits a popular matching and, if so, finding one, was studied by Abraham et al. (SIAM J. Comput. 37(4):1030–1045, 2007). If there is no popular matching, a reasonable substitute is a matching whose unpopularity is bounded. We consider two measures of unpopularity—unpopularity factor denoted by u(M) and unpopularity margin denoted by g(M). McCutchen recently showed that computing a matching M with the minimum value of u(M) or g(M) is NP-hard, and that if G does not admit a popular matching, then we have u(M)≥2 for all matchings M in G.

Here we show that a matching M that achieves u(M)=2 can be computed in \(O(m\sqrt{n})\) time (where m is the number of edges in G and n is the number of nodes) provided a certain graph H admits a matching that matches all people. We also describe a sequence of graphs: H=H2,H3,…,Hk such that if Hk admits a matching that matches all people, then we can compute in \(O(km\sqrt{n})\) time a matching M such that u(M)≤k−1 and \(g(M)\le n(1-\frac{2}{k})\). Simulation results suggest that our algorithm finds a matching with low unpopularity in random instances.


Matching with preferences Popularity Approximation algorithms 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abdulkadiroǧlu, A., Sönmez, T.: Random serial dictatorship and the core from random endowments in house allocation problems. Econometrica 66(3), 689–701 (1998) MathSciNetCrossRefGoogle Scholar
  2. 2.
    Abraham, D.J., Cechlárová, K., Manlove, D.F., Mehlhorn, K.: Pareto-optimality in house allocation problems. In: Proceedings of 15th Annual International Symposium on Algorithms and Computation. pp. 3–15 (2004) Google Scholar
  3. 3.
    Abraham, D.J., Irving, R.W., Kavitha, T., Mehlhorn, K.: Popular matchings. SIAM J. Comput. 37(4), 1030–1045 (2007) MathSciNetGoogle Scholar
  4. 4.
    Gale, D., Shapley, L.: College admissions and the stability of marriage. Am. Math. Mon. 69, 9–14 (1962) MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Gärdenfors, P.: Match making: assignments based on bilateral preferences. Behav. Sci. 20, 166–173 (1975) CrossRefGoogle Scholar
  6. 6.
    Graham, R.L., Grotschel, M., Lovasz, L. (eds.) The Handbook of Combinatorics, vol. 1, pp. 179–232. Elsevier Science, Amsterdam (1995). Chap. 3, Matchings and extensions Google Scholar
  7. 7.
    Gusfield, D., Irving, R.W.: The Stable Marriage Problem: Structure and Algorithms. MIT Press, Cambridge (1989) MATHGoogle Scholar
  8. 8.
    Hylland, A., Zeckhauser, R.: The efficient allocation of individuals to positions. J. Polit. Econ. 87(22), 293–314 (1979) CrossRefGoogle Scholar
  9. 9.
    Irving, R.W.: Stable marriage and indifference. Discrete Appl. Math. 48, 261–272 (1994) MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Irving, R.W., Kavitha, T., Mehlhorn, K., Michail, D., Paluch, K.: Rank-maximal matchings. ACM Trans. Algorithms 2(4), 602–610 (2006) MathSciNetCrossRefGoogle Scholar
  11. 11.
    Kavitha, T., Mestre, J., Nasre, M.: Popular mixed matchings. In: Proceedings of the 36th International Colloquium on Automata, Languages and Programming, pp. 574–584 (2009) Google Scholar
  12. 12.
    Kavitha, T., Nasre, M.: Note: optimal popular matchings. Discrete Appl. Math. 157(14), 3181–3186 (2009) MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Kavitha, T., Nasre, M.: Popular matchings with variable job capacities. In: Proceedings of 20th Annual International Symposium on Algorithms and Computation, pp. 423–433 (2009) Google Scholar
  14. 14.
    Mahdian, M.: Random popular matchings. In: Proceedings of the 8th ACM Conference on Electronic Commerce, pp. 238–242 (2006) Google Scholar
  15. 15.
    Manlove, D., Sng, C.: Popular matchings in the capacitated house allocation problem. In: Proceedings of the 14th Annual European Symposium on Algorithms, pp. 492–503 (2006) Google Scholar
  16. 16.
    McCutchen, R.M.: The least-unpopularity-factor and least-unpopularity-margin criteria for matching problems with one-sided preferences. In: Proceedings of the 15th Latin American Symposium on Theoretical Informatics, pp. 593–604 (2008) Google Scholar
  17. 17.
    McDermid, E., Irving, R.W.: Popular matchings: Structure and algorithms. In: Proceedings of 15th Annual International Computing and Combinatorics Conference, pp. 506–515 (2009) Google Scholar
  18. 18.
    Mestre, J.: Weighted popular matchings. In: Proceedings of the 33rd International Colloquium on Automata, Languages and Programming, pp. 715–726 (2006) Google Scholar
  19. 19.
    Roth, A.E., Postlewaite, A.: Weak versus strong domination in a market with indivisible goods. J. Math. Econ. 4, 131–137 (1977) MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Yuan, Y.: Residence exchange wanted: a stable residence exchange problem. Eur. J. Oper. Res. 90, 536–546 (1996) MATHCrossRefGoogle Scholar
  21. 21.
    Zhou, L.: On a conjecture by gale about one-sided matching problems. J. Econ. Theory 52(1), 123–135 (1990) MATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Chien-Chung Huang
    • 1
  • Telikepalli Kavitha
    • 2
  • Dimitrios Michail
    • 3
  • Meghana Nasre
    • 2
  1. 1.Max-Planck-Institut für InformatikSaarbrückenGermany
  2. 2.Indian Institute of ScienceBangaloreIndia
  3. 3.Department of Informatics and TelematicsHarokopion University of AthensAthensGreece

Personalised recommendations