, Volume 61, Issue 3, pp 694–737 | Cite as

A Simpler Linear-Time Recognition of Circular-Arc Graphs

  • Haim Kaplan
  • Yahav Nussbaum


We give a linear-time recognition algorithm for circular-arc graphs based on the algorithm of Eschen and Spinrad (Proceedings of the Fourth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 128–137, 1993) and Eschen (PhD thesis, 1997). Our algorithm both improves the time bound of Eschen and Spinrad, and fixes some flaws in it. Our algorithm is simpler than the earlier linear-time recognition algorithm of McConnell (Algorithmica 37(2):93–147, 2003), which is the only linear time recognition algorithm previously known.


Circular-arc graph Circular-arc model Recognition algorithm Intersection graph Consecutive-ones property 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bollobás, B.: Extremal Graph Theory. London Mathematical Society Monographs, vol. 11. Academic Press, London (1978) zbMATHGoogle Scholar
  2. 2.
    Booth, K.S., Lueker, G.S.: Testing for the consecutive ones property, interval graphs, and graph planarity using PQ-tree algorithms. J. Comput. Syst. Sci. 13(3), 335–379 (1976) MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Conitzer, V., Derryberry, J., Sandholm, T.: Combinatorial auctions with structured item graphs. In: Proceedings of the Nineteenth National Conference on Artificial Intelligence, pp. 212–218 (2004) Google Scholar
  4. 4.
    Eschen, E.M.: Circular-arc graph recognition and related problems. PhD thesis, Department of Computer Science, Vanderbilt University (1997) Google Scholar
  5. 5.
    Eschen, E.M., Spinrad, J.P.: An O(n 2) algorithm for circular-arc graph recognition. In: Proceedings of the Fourth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 128–137 (1993) Google Scholar
  6. 6.
    Gavril, F.: Algorithms on circular-arc graphs. Networks 4, 357–369 (1974) MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Hadwiger, H., Debrunner, H., Klee, V.: Combinatorial Geometry in the Plane. Holt, Rinehart & Winston, New York (1964) Google Scholar
  8. 8.
    Hsu, W.-L.: O(mn) algorithms for the recognition and isomorphism problems on circular-arc graphs. SIAM J. Comput. 24(3), 411–439 (1995) MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Hsu, W.-L., McConnell, R.M.: PC-trees and circular-ones arrangements. Theor. Comput. Sci. 296(1), 99–116 (2003) MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Kaplan, H., Nussbaum, Y.: A simpler linear-time recognition of circular-arc graphs. In: 10th Scandinavian Workshop on Algorithm Theory (SWAT). Lecture Notes in Computer Science, vol. 4059, pp. 41–52. Springer, Berlin (2006) Google Scholar
  11. 11.
    Klee, V.: What are the intersections graphs of arcs in a circle? Am. Math. Mon. 76(7), 810–813 (1969) MathSciNetCrossRefGoogle Scholar
  12. 12.
    Lin, M.C., Szwarcfiter, J.L.: Characterizations and linear time recognition of helly circular-arc graphs. In: 12th Annual International Computing and Combinatorics Conference (COCOON). Lecture Notes in Computer Science, vol. 4112, pp. 73–82. Springer, Berlin (2006) Google Scholar
  13. 13.
    Ma, T.-H., Spinrad, J.P.: Avoiding matrix multiplication. In: 16th International Workshop on Graph-Theoretic Concepts in Computer Science (WG). Lecture Notes in Computer Science, vol. 484, pp. 61–71. Springer, Berlin (1991) Google Scholar
  14. 14.
    McConnell, R.M.: Linear-time recognition of circular-arc graphs. Algorithmica 37(2), 93–147 (2003) MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    McConnell, R.M., Spinrad, J.P.: Modular decomposition and transitive orientation. Discrete Math. 201(1–3), 189–241 (1999) MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    McConnell, R.M., Spinrad, J.P.: Construction of probe interval models. In: Proceedings of the Thirteenth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 866–875 (2002) Google Scholar
  17. 17.
    Spinrad, J.P.: Circular-arc graphs with clique cover number two. J. Comb. Theory, Ser. B 44(3), 300–306 (1988) MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Spinrad, J.P.: Efficient Graph Representations. Fields Institute Monographs, vol. 19. American Mathematical Society, Providence (2003) zbMATHGoogle Scholar
  19. 19.
    Spinrad, J.P., Valdes, J.: Recognition and isomorphism of two dimensional partial orders. In: 10th International Colloquium on Automata, Languages and Programming (ICALP). Lecture Notes in Computer Science, vol. 154, pp. 676–686. Springer, Berlin (1983) CrossRefGoogle Scholar
  20. 20.
    Stefanakos, S., Erlebach, T.: Routing in all-optical ring networks revisited. In: Proceedings of the 9th IEEE Symposium on Computers and Communication, pp. 288–293 (2004) Google Scholar
  21. 21.
    Tucker, A.C.: Matrix characterizations of circular-arc graphs. Pac. J. Math. 39(2), 535–545 (1971) zbMATHGoogle Scholar
  22. 22.
    Tucker, A.C.: An efficient test for circular-arc graphs. SIAM J. Comput. 9(1), 1–24 (1980) MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.The Blavatnik School of Computer ScienceTel Aviv UniversityTel AvivIsrael

Personalised recommendations