Better and Simpler Approximation Algorithms for the Stable Marriage Problem

Abstract

We first consider the problem of finding a maximum size stable matching if incomplete lists and ties are both allowed, but ties are on one side only. For this problem we give a simple, linear time 3/2-approximation algorithm, improving on the best known approximation factor 5/3 of Irving and Manlove (J. Comb. Optim., doi:10.1007/s10878-007-9133-x, 2007). Next, we show how this extends to the Hospitals/Residents problem with the same ratio if the residents have strict orders. We also give a simple linear time algorithm for the general problem with approximation factor 5/3, improving the best known 15/8-approximation algorithm of Iwama, Miyazaki and Yamauchi (SODA ’07: Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 288–297, 2007). For the cases considered in this paper it is NP-hard to approximate within a factor of 21/19 by the result of Halldórsson et al. (ACM Transactions on Algorithms 3(3):30, 2007).

Our algorithms not only give better approximation ratios than the cited ones, but are much simpler and run significantly faster. Also we may drop a restriction used in (J. Comb. Optim., doi:10.1007/s10878-007-9133-x, 2007) and the analysis is substantially more moderate.

Preliminary versions of this paper appeared in (Király, Egres Technical Report TR-2008-04, www.cs.elte.hu/egres/, 2008; Király in Proceedings of MATCH-UP 2008: Matching Under Preferences—Algorithms and Complexity, Satellite Workshop of ICALP, July 6, 2008, Reykjavík, Iceland, pp. 36–45, 2008; Király in ESA 2008, Lecture Notes in Computer Science, vol. 5193, pp. 623–634, 2008). For the related results obtained thenceforth see Sect. 5.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Gale, D., Shapley, L.S.: College admissions and the stability of marriage. Am. Math. Mon. 69, 9–15 (1962)

    MathSciNet  MATH  Article  Google Scholar 

  2. 2.

    Halldórsson, M.M., Irving, R.W., Iwama, K., Manlove, D.F., Miyazaki, S., Morita, Y., Scott, S.: Approximability results for stable marriage problems with ties. Theor. Comput. Sci. 306, 431–447 (2003)

    MATH  Article  Google Scholar 

  3. 3.

    Halldórsson, M.M., Iwama, K., Miyazaki, S., Yanagisawa, H.: Improved approximation results for the stable marriage problem. ACM Trans. Algorithms 3(3), 30 (2007)

    MathSciNet  Article  Google Scholar 

  4. 4.

    Halldórsson, M.M., Iwama, K., Miyazaki, S., Yanagisawa, H.: Randomized approximation of the stable marriage problem. Theor. Comput. Sci. 325, 439–465 (2004)

    MATH  Article  Google Scholar 

  5. 5.

    Irving, R.W., Manlove, D.F.: Approximation algorithms for hard variants of the stable marriage and hospitals/residents problems. J. Comb. Optim. (2007). doi:10.1007/s10878-007-9133-x

    Google Scholar 

  6. 6.

    Irving, R.W., Manlove, D.F.: Finding large stable matchings. J. Exp. Algorithmics 14 (2009). doi:10.1145/1498698.1537595

  7. 7.

    Iwama, K., Manlove, D.F., Miyazaki, S., Morita, Y.: Stable marriage with incomplete lists and ties. In: Proceedings of the 26th International Colloquium on Automata, Languages and Programming. Lecture Notes in Computer Science, vol. 1664, pp. 443–452. Springer, Berlin (1999)

    Google Scholar 

  8. 8.

    Iwama, K., Miyazaki, S., Yamauchi, N.: A 1.875-approximation algorithm for the stable marriage problem. In: SODA ’07: Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 288–297. Society for Industrial and Applied Mathematics, Philadelphia (2007)

    Google Scholar 

  9. 9.

    Király, Z.: Better and simpler approximation algorithms for the stable marriage problem. Egres Technical Report TR-2008-04, www.cs.elte.hu/egres/

  10. 10.

    Király, Z.: Better and simpler approximation algorithms for the stable marriage problem. In: Proceedings of MATCH-UP 2008: Matching Under Preferences—Algorithms and Complexity, Satellite Workshop of ICALP, July 6, 2008, Reykjavík, Iceland, pp. 36–45 (2008)

  11. 11.

    Király, Z.: Better and simpler approximation algorithms for the stable marriage problem. In: ESA 2008. Lecture Notes in Computer Science, vol. 5193, pp. 623–634. Springer, Berlin (2008)

    Google Scholar 

  12. 12.

    Manlove, D.F., Irving, R.W., Iwama, K., Miyazaki, S., Morita, Y.: Hard variants of stable marriage. Theor. Comput. Sci. 276, 261–279 (2002)

    MathSciNet  MATH  Article  Google Scholar 

  13. 13.

    McDermid, E.J.: A \(\frac{3}{2}\) -approximation algorithm for general stable marriage. In: Automata, Languages and Programming, 36th International Colloquium, ICALP 2009, Rhodes, Greece. Lecture Notes in Computer Science, vol. 555, pp. 689–700. Springer, Berlin (2008)

    Google Scholar 

  14. 14.

    Yanagisawa, H.: Approximation algorithms for stable marriage problems. PhD Thesis, www.lab2.kuis.kyoto-u.ac.jp/~yanagis/thesis_yanagis.pdf (2007)

  15. 15.

    Yanagisawa, H.: Personal communication

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Zoltán Király.

Additional information

Research is supported by EGRES group (MTA-ELTE), OTKA grants NK 67867, K 60802, and by Hungarian National Office for Research and Technology programme NKFP072-TUDORKA7.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Király, Z. Better and Simpler Approximation Algorithms for the Stable Marriage Problem. Algorithmica 60, 3–20 (2011). https://doi.org/10.1007/s00453-009-9371-7

Download citation

  • Stable matching
  • Hospitals/Residents problem
  • Approximation algorithms