Skip to main content
Log in

Minimum Weight Convex Steiner Partitions

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

New tight bounds are presented on the minimum length of planar straight line graphs connecting n given points in the plane and having convex faces. Specifically, we show that the minimum length of a convex Steiner partition for n points in the plane is at most O(log n/log log n) times longer than a Euclidean minimum spanning tree (EMST), and this bound is the best possible. Without Steiner points, the corresponding bound is known to be Θ(log n), attained for n vertices of a pseudo-triangle. We also show that the minimum length convex Steiner partition of n points along a pseudo-triangle is at most O(log log n) times longer than an EMST, and this bound is also the best possible. Our methods are constructive and lead to O(nlog n) time algorithms for computing convex Steiner partitions having O(n) Steiner points and weight within the above worst-case bounds in both cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bern, M.W., Eppstein, D., Gilbert, J.R.: Provably good mesh generation. J. Comput. Syst. Sci. 48(3), 384–409 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bose, P., Morin, P.: Competitive online routing in geometric graphs. Theor. Comput. Sci. 324(2–3), 273–288 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bose, P., Morin, P.: Online routing in triangulations. SIAM J. Comput. 33(4), 937–951 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bose, P., Morin, P., Stojmenovic, I., Urrutia, J.: Routing with guaranteed delivery in ad hoc wireless networks. Wirel. Netw. 7, 609–616 (2001)

    Article  MATH  Google Scholar 

  5. Bose, P., Brodnik, A., Carlsson, S., Demaine, E.D., Fleischer, R., Lopez-Ortiz, A., Morin, P., Munro, I.: Online routing in convex subdivisions. Intern. J. Comput. Geom. & Appl. 12(4), 283–295 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bose, P., Gudmundsson, J., Smid, M.: Constructing plane spanners of bounded degree and low weight. Algorithmica 42, 249–264 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  7. Chazelle, B., Dobkin, D.P.: Decomposing a polygon into its convex parts. In: Proc. of the 11th Sympos. on Theory of Computing, pp. 38–48. ACM, New York (1979)

    Google Scholar 

  8. Chazelle, B., Edelsbrunner, H., Grigni, M., Guibas, L.J., Hershberger, J., Sharir, M., Snoeyink, J.: Ray shooting in polygons using geodesic triangulations. Algorithmica 12, 54–68 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  9. Clarkson, K.L.: Approximation algorithms for planar traveling salesman tours and minimum-length triangulations. In: Proc. of the 2nd Sympos. on Discrete Algorithms, pp. 17–23. ACM, New York (1991)

    Google Scholar 

  10. de Berg, M., van Kreveld, M., Overmars, M., Schwarzkopf, O.: Computational Geometry: Algorithms and Applications, 3rd edn. Springer, Berlin (2008)

    MATH  Google Scholar 

  11. de Wet, P.O.: Geometric Steiner minimal trees. Ph.D. thesis, University of South Africa (2008). http://etd.unisa.ac.za/ETD-db/theses/available/etd-08052008-130058/unrestricted/thesis.pdf

  12. Du, D.-Z., Hwang, F.K.: A proof of Gilbert-Pollak’s conjecture on the Steiner ratio. Algorithmica 7, 121–135 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  13. Dumitrescu, A., Tóth, C.D.: Light orthogonal networks with constant geometric dilation. J. Discrete Algorithms 7, 112–129 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  14. Ebbers-Baumann, A., Grüne, A., Klein, R.: On the geometric dilation of finite point sets. Algorithmica 44, 137–149 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  15. Eppstein, D.: Approximating the minimum weight Steiner triangulation. Discrete Comput. Geom. 11, 163–191 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  16. Eppstein, D.: Spanning trees and spanners. In: Sack, J.-R., Urrutia, J. (eds.) Handbook of Computational Geometry, pp. 425–461. Elsevier, Amsterdam (2000)

    Chapter  Google Scholar 

  17. Gao, J., Guibas, L.J., Hershberger, J., Zhang, L., Zhu, A.: Geometric spanners for routing in mobile networks. IEEE J. Sel. Areas Commun. 23(1), 174–185 (2005)

    Article  Google Scholar 

  18. García-López, J., Nicolás, C.M.: Planar point sets with large minimum convex partitions. In: Proc. of European Workshop on Comput. Geom., pp. 51–54, Delphi (2006).

  19. Gilbert, P.D.: New results in planar triangulations. Report R-850, Coordinated Science Laboratory, University of Illinois, Urbana, Illinois (1979)

  20. Gilbert, E.N., Pollak, H.O.: Steiner minimal trees. SIAM J. Appl. Math. 16(1), 1–29 (1968)

    Article  MATH  MathSciNet  Google Scholar 

  21. Gudmundsson, J., Levcopoulos, C.: Minimum weight pseudo-triangulations. Comput. Geom. Theory Appl. 38(3), 139–153 (2007)

    MATH  MathSciNet  Google Scholar 

  22. Keil, J.M., Gutwin, C.A.: Classes of graphs that approximate the complete Euclidean graph. Discrete Comput. Geom. 7, 13–28 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  23. Keil, J.M., Snoeyink, J.: On the time bound for convex decomposition of simple polygons. Int. J. Comput. Geom. Appl. 12, 181–192 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  24. Kim, Y.-J., Govindan, R., Karp, B., Shenker, S.: Geographic routing made practical. In: Proc. of the 2nd Sympos. on Networked Systems Design and Implementation, pp. 217–230, USENIX Assoc. (2005)

  25. Kirkpatrick, D.G.: A note on Delaunay and optimal triangulations. Inf. Proc. Lett. 10(3), 127–128 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  26. Klincsek, G.T.: Minimal triangulations of polygonal domains. In: Submodular Functions and Optimization. Annals of Discrete Math., vol. 9, pp. 121–123. Elsevier, Amsterdam (1980)

    Google Scholar 

  27. Knauer, C., Spillner, A.: Approximation algorithms for the minimum convex partition problem. In: Proc. of the 10th Scandinavian Workshop on Algorithm Theory. LNCS, vol. 4059, pp. 232–241. Springer, Berlin (2006)

    Google Scholar 

  28. Kranakis, E., Singh, H., Urrutia, J.: Compass routing on geometric networks. In: Proc. of the 11th Canadian Conf. on Comput. Geom., pp. 51–54, Vancouver, BC (1999)

  29. Leighton, T., Moitra, A.: Some results on greedy embeddings in metric spaces. In: Proc. of the 49th Sympos. on Foundations of Comput. Sci., pp. 337–346. IEEE, New York (2008)

    Google Scholar 

  30. Levcopoulos, C., Krznaric, D.: Quasi-greedy triangulations approximating the minimum weight triangulation. J. Algorithms 27(2), 303–338 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  31. Levcopoulos, C., Lingas, A.: Bounds on the length of convex partitions of polygons. In: Foundations of Software Technology and Theoretical Computer Science. LNCS, vol. 181, pp. 279–295. Springer, Berlin (1984)

    Google Scholar 

  32. Levcopoulos, C., Lingas, A.: There are planar graphs almost as good as the complete graphs and almost as cheap as minimum spanning trees. Algorithmica 8, 251–256 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  33. Lingas, A.: The power of non-rectilinear holes. In: Proc. of the 9th Internat. Colloq. on Automata, Languages and Programming. LNCS, vol. 140, pp. 369–383. Springer, Berlin (1982)

    Chapter  Google Scholar 

  34. Mehlhorn, K., Näher, S.: LEDA: A Platform for Combinatorial and Geometric Computing. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  35. Mulzer, W., Rote, G.: Minimum weight triangulation is NP-hard. J. ACM 55(2) (2008), article 11

    Google Scholar 

  36. Narasimhan, G., Smid, M.: Geometric Spanner Networks. Cambridge University Press, Cambridge (2007)

    Book  MATH  Google Scholar 

  37. Neumann-Lara, V., Rivera-Campo, E., Urrutia, J.: A note on convex decompositions of a set of points in the plane. Graphs Comb. 20(2), 223–231 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  38. Papadimitriou, C.H., Ratajczak, D.: On a conjecture related to geometric routing. Theor. Comput. Sci. 344, 3–14 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  39. Plaisted, D.A., Hong, J.: A heuristic triangulation algorithm. J. Algorithms 8(3), 405–437 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  40. Rao, A., Papadimitriou, C.H., Shenker, S., Stoica, I.: Geographic routing without location information. In: Proc. of the 9th Conf. on Mobile Computing and Networking, pp. 96–108. ACM, New York (2003)

    Google Scholar 

  41. Remy, J., Steger, A.: A quasi-polynomial time approximation scheme for minimum weight triangulation. In: Proc. of the 38th Sympos. on Theory of Computing, pp. 316–325. ACM, New York (2006) (to appear in J. ACM)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Csaba D. Tóth.

Additional information

A preliminary version of this paper appeared in the Proceedings of the 19th ACM-SIAM Symposium on Discrete Algorithms, ACM Press, pp. 581–590 (2008).

A. Dumitrescu was supported in part by NSF CAREER grant CCF-0444188.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dumitrescu, A., Tóth, C.D. Minimum Weight Convex Steiner Partitions. Algorithmica 60, 627–652 (2011). https://doi.org/10.1007/s00453-009-9329-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-009-9329-9

Keywords

Navigation