Skip to main content
Log in

Three-Sided Stable Matchings with Cyclic Preferences

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

Knuth (Mariages Stables, Les Presses de L’Université de Montréal, 1976) asked whether the stable matching problem can be generalised to three dimensions, e.g., for families containing a man, a woman and a dog. Subsequently, several authors considered the three-sided stable matching problem with cyclic preferences, where men care only about women, women only about dogs, and dogs only about men. In this paper we prove that if the preference lists may be incomplete, then the problem of deciding whether a stable matching exists, given an instance of the three-sided stable matching problem with cyclic preferences, is NP-complete. Considering an alternative stability criterion, strong stability, we show that the problem is NP-complete even for complete lists. These problems can be regarded as special types of stable exchange problems, therefore these results have relevance in some real applications, such as kidney exchange programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abraham, D.J., Blum, A., Sandholm, T.: Clearing algorithms for barter-exchange markets: Enabling nationwide kidney exchanges. In: Proceedings of ACM-EC 2007: the Eighth ACM Conference on Electronic Commerce (2007)

  2. Alkan, A.: Non-existence of stable threesome matchings. Math. Soc. Sci. 16, 207–209 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  3. Biró, P.: The stable matching problem and its generalizations: an algorithmic and game theoretical approach. PhD thesis, Budapest University of Technology and Economics (2007)

  4. Biró, P., Cechlárová, K.: Inapproximability of the kidney exchange problem. Inf. Process. Lett. 101(5), 199–202 (2007)

    Article  MATH  Google Scholar 

  5. Boros, E., Gurvich, V., Jaslar, S., Krasner, D.: Stable matchings in three-sided systems with cyclic preferences. Discrete Math. 289, 1–10 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  6. Cechlárová, K., Fleiner, T., Manlove, D.F.: The kidney exchange game. In: Zadik-Stirn, L., Drobne, S., (eds.) Proc. SOR’05, pp. 77–83 (2005)

  7. Cechlárová, K., Lacko, V.: The kidney exchange game: How hard is to find a donor? IM Preprint, 4/2006 (2006)

  8. Eriksson, K., Sjöstrand, J., Strimling, P.: Three-dimensional stable matching with cyclic preferences. Math. Soc. Sci. 52(1), 77–87 (2006)

    Article  MATH  Google Scholar 

  9. Gale, D., Shapley, L.S.: College admissions and the stability of marriage. Am. Math. Mon. 69(1), 9–15 (1962)

    Article  MATH  MathSciNet  Google Scholar 

  10. Gale, D., Sotomayor, M.: Some remarks on the stable matching problem. Discrete Appl. Math. 11(3), 223–232 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  11. Gusfield, D., Irving, R.W.: The Stable Marriage Problem: Structure and Algorithms. Foundations of Computing Series. MIT Press, Cambridge (1989)

    MATH  Google Scholar 

  12. Huang, C.-C.: Two’s company, three’s a crowd: stable family and threesome roommate problems. In: Algorithms—ESA 2007. Lecture Notes in Comput. Sci., vol. 4698, pp. 558–569. Springer, Berlin (2007)

    Chapter  Google Scholar 

  13. Huang, C.-C.: Circular stable matching and 3-way kidney transplant. In: Proceedings of MATCH-UP: Matching Under Preferences—Algorithms and Complexity, Satellite Workshop of ICALP 2008, pp. 67–78 (2008)

  14. Irving, R.W.: An efficient algorithm for the “stable roommates” problem. J. Algorithms 6(4), 577–595 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  15. Irving, R.W.: The cycle-roommates problem: a hard case of kidney exchange. Inf. Proces. Lett. 103, 1–4 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  16. Keizer, K.M., de Klerk, M., Haase-Kromwijk, B.J.J.M., Weimar, W.: The Dutch algorithm for allocation in living donor kidney exchange. Transplant. Proc. 37, 589–591 (2005)

    Article  Google Scholar 

  17. Knuth, D.E.: Mariages Stables. Les Presses de L’Université de Montréal, Montréal (1976)

    MATH  Google Scholar 

  18. Manlove, D.F., Irving, R.W., Iwama, K., Miyazaki, S., Morita, Y.: Hard variants of stable marriage. Theor. Comput. Sci. 276(1–2), 261–279 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  19. New England Program for Kidney Exchange. http://www.nepke.org

  20. Ng, C., Hirschberg, D.S.: Three-dimensional stable matching problems. SIAM J. Discrete Math. 4(2), 245–252 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  21. Ronn, E.: NP-complete stable matching problems. J. Algorithms 11, 285–304 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  22. Roth, A.E., Postlewaite, A.: Weak versus strong domination in a market with indivisible goods. J. Math. Econ. 4(2), 131–137 (1977)

    MATH  MathSciNet  Google Scholar 

  23. Roth, A.E., Sönmez, T., Ünver, U.M.: Kidney exchange. J. Econ. Theory 119, 457–488 (2004)

    MATH  Google Scholar 

  24. Roth, A.E., Sönmez, T., Ünver, U.M.: A kidney exchange clearinghouse in New England. Am. Econ. Rev. Pap. Proc. 95(2), 376–380 (2005)

    Article  Google Scholar 

  25. Roth, A.E., Sönmez, T., Ünver, U.M.: Pairwise kidney exchange. J. Econ. Theory 125(2), 151–188 (2005)

    Article  MATH  Google Scholar 

  26. Roth, A.E., Sönmez, T., Ünver, U.M.: Coincidence of wants in markets with compatibility based preferences. Am. Econ. Rev. 97(3), 828–851 (2007)

    Article  Google Scholar 

  27. Saidman, S.L., Roth, A.E., Sönmez, T., Ünver, U.M., Delmonico, S.L.: Increasing the opportunity of live kidney donation by matching for two and three way exchanges. Transplantation 81(5), 773–782 (2006)

    Article  Google Scholar 

  28. Segev, S.L., Gentry, S.E., Warren, D.S., Reeb, B., Montgomery, R.A.: Kidney paired donation and optimizing the use of live donor organs. J. Am. Med. Assoc. 293, 1883–1890 (2005)

    Article  Google Scholar 

  29. Shapley, L.S., Scarf, H.E.: On cores and indivisibility. J. Math. Econ. 1(1), 23–37 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  30. Subramanian, A.: A new approach to stable matching problems. SIAM J. Comput. 23(4), 671–700 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  31. UK Transplant. http://www.uktransplant.org.uk

  32. United Network for Organ Sharing. http://www.unos.org

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Péter Biró.

Additional information

This work was supported by EPSRC grant EP/E011993/1.

P. Biró was supported by OTKA grant K69027.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Biró, P., McDermid, E. Three-Sided Stable Matchings with Cyclic Preferences. Algorithmica 58, 5–18 (2010). https://doi.org/10.1007/s00453-009-9315-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-009-9315-2

Keywords

Navigation