Skip to main content
SpringerLink
Account
Menu
Find a journal Publish with us
Search
Cart
  1. Home
  2. Algorithmica
  3. Article

On Dissemination Thresholds in Regular and Irregular Graph Classes

  • Open access
  • Published: 21 April 2009
  • volume 59, pages 16–34 (2011)
Download PDF

You have full access to this open access article

Algorithmica Aims and scope Submit manuscript
On Dissemination Thresholds in Regular and Irregular Graph Classes
Download PDF
  • I. Rapaport1,
  • K. Suchan2,3,
  • I. Todinca4 &
  • …
  • J. Verstraete5 
  • 532 Accesses

  • 5 Citations

  • Explore all metrics

Cite this article

Abstract

We investigate the natural situation of the dissemination of information on various graph classes starting with a random set of informed vertices called active. Initially active vertices are chosen independently with probability p, and at any stage in the process, a vertex becomes active if the majority of its neighbours are active, and thereafter never changes its state. This process is a particular case of bootstrap percolation. We show that in any cubic graph, with high probability, the information will not spread to all vertices in the graph if \(p<\frac{1}{2}\) . We give families of graphs in which information spreads to all vertices with high probability for relatively small values of p.

Article PDF

Download to read the full article text

Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. Aizenman, A., Lebowitz, J.: Metastability effects in bootstrap percolation. J. Phys. A Math. Gen. 21, 3801–3813 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  2. Alon, N., Spencer, J.: The Probabilistic Method. Wiley, New York (1992). 2nd edn. (2000)

    MATH  Google Scholar 

  3. Bollobás, B.: Random Graphs. Academic Press, San Diego (1985). 2nd edn. Cambridge University Press, Cambridge (2001)

    MATH  Google Scholar 

  4. Bollobás, B., Szemerédi, E.: Girth of sparse graphs. J. Graph Theory 39(3), 194–200 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  5. Balogh, J., Pittel, B.: Bootstrap percolation on the random regular graph. Random Struct. Algorithms 30(1–2), 257–286 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  6. Balogh, J., Bollobás, B., Morris, J.: Majority bootstrap percolation on the hypercube. Manuscript (2007)

  7. Carvajal, B., Matamala, M., Rapaport, I., Schabanel, N.: Small alliances in graphs. In: Proceedings of MFCS 2007. LNCS, vol. 4708, pp. 218–227. Springer, Berlin (2007)

    Google Scholar 

  8. Cerf, R., Manzo, F.: The threshold regime of finite volume bootstrap percolation. Stoch. Process. Their Appl. 101, 69–82 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  9. Flake, G.W., Lawrence, S., Giles, C.L.: Efficient identification of web communities. In: Proceedings of KKD 2000, pp. 150–160 (2000)

  10. Garmo, H.: The asymptotic distribution of long cycles in random regular graphs. Random Struct. Algorithms 15(1), 43–92 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  11. Habib, M., McDiarmid, C., Ramirez-Alfonsin, J., Reed, B. (eds.): Probabilistic Methods for Algorithmic Discrete Mathematics. Algorithms and Combinatorics, vol. 16. Springer, Berlin (1998)

    MATH  Google Scholar 

  12. Haynes, T.W., Hedetniemi, S.T., Henning, M.A.: Global defensive alliances in graphs. Electron. J. Comb. 10, 139–146 (2003)

    MathSciNet  Google Scholar 

  13. Hayrapetyan, A., Kempe, D., Pál, M., Svitkina, Z.: Unbalanced graph cuts. In: Proceedings of ESA 2005. LNCS, vol. 3669, pp. 191–202. Springer, Berlin (2005)

    Google Scholar 

  14. Holroyd, A.: Sharp metastability threshold for two-dimensional bootstrap percolation. Probab. Theory Relat. Fields 125(2), 195–224 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  15. Janson, S., Łuczak, T., Rucinski, A.: Random Graphs. Wiley-Interscience Series in Discrete Mathematics and Optimization. Wiley, New York (2000)

    MATH  Google Scholar 

  16. Kempe, D., Kleinberg, J., Tardos, E.: Maximizing the spread of influence through a social network. In: Proceedings of KDD 2003, pp. 137–146 (2003)

  17. Lubotsky, A., Phillips, R., Sarnak, R.: Ramanujan graphs. Combinatorica 8, 261–278 (1988)

    Article  MathSciNet  Google Scholar 

  18. Peleg, D.: Local majorities, coalitions and monopolies in graphs: a review. Theoret. Comput. Sci. 282, 231–257 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  19. Wormald, N.: The asymptotic distribution of short cycles in random regular graphs. J. Comb. Theory, Ser. B 31, 168–182 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  20. Wormald, N.: Models of random regular graphs. In: Lamb, J.D., Preece, D.A. (eds.) Surveys in Combinatorics. London Mathematical Society Lecture Note Series, vol. 276, pp. 239–298. Cambridge University Press, Cambridge (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Departamento de Ingeniería Matemática and Centro de Modelamiento Matemático, Universidad de Chile, Santiago, Chile

    I. Rapaport

  2. Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibañez, Santiago, Chile

    K. Suchan

  3. Faculty of Applied Mathematics, AGH–University of Science and Technology, Cracow, Poland

    K. Suchan

  4. LIFO, Université d’Orléans, Orléans, France

    I. Todinca

  5. University of California, San Diego, CA, USA

    J. Verstraete

Authors
  1. I. Rapaport
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. K. Suchan
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. I. Todinca
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. J. Verstraete
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to I. Todinca.

Additional information

Authors acknowledge the support of CONICYT via Anillo en Redes ACT08 (I.R., K.S.), Fondecyt 1090156 (I.R.), ECOS-CONICYT (I.R., I.T.), Fondap on Applied Mathematics (I.R.), French ANR projects STAL-DEC-OPT and ALADDIN (I.T.) and an Alfred P. Sloan Fellowship (J.V.).

Rights and permissions

Open Access This is an open access article distributed under the terms of the Creative Commons Attribution Noncommercial License (https://creativecommons.org/licenses/by-nc/2.0), which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Cite this article

Rapaport, I., Suchan, K., Todinca, I. et al. On Dissemination Thresholds in Regular and Irregular Graph Classes. Algorithmica 59, 16–34 (2011). https://doi.org/10.1007/s00453-009-9309-0

Download citation

  • Received: 04 July 2008

  • Accepted: 12 April 2009

  • Published: 21 April 2009

  • Issue Date: January 2011

  • DOI: https://doi.org/10.1007/s00453-009-9309-0

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Bootstrap percolation
  • Cubic graphs
  • Information dissemination
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

search

Navigation

  • Find a journal
  • Publish with us

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support

Not affiliated

Springer Nature

© 2023 Springer Nature