Skip to main content
Log in

Efficient Exact Algorithms on Planar Graphs: Exploiting Sphere Cut Decompositions

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

We present a general framework for designing fast subexponential exact and parameterized algorithms on planar graphs. Our approach is based on geometric properties of planar branch decompositions obtained by Seymour and Thomas, combined with refined techniques of dynamic programming on planar graphs based on properties of non-crossing partitions. To exemplify our approach we show how to obtain an  \(O(2^{6.903\sqrt{n}})\) time algorithm solving weighted Hamiltonian Cycle on an n-vertex planar graph. Similar technique solves Planar Graph Travelling Salesman Problem with n cities in time \(O(2^{9.8594\sqrt{n}})\) . Our approach can be used to design parameterized algorithms as well. For example, we give an algorithm that for a given k decides if a planar graph on n vertices has a cycle of length at least k in time \(O(2^{13.6\sqrt{k}}n+n^{3})\) .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alber, J., Bodlaender, H.L., Fernau, H., Kloks, T., Niedermeier, R.: Fixed parameter algorithms for dominating set and related problems on planar graphs. Algorithmica 33(4), 461–493 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  2. Alber, J., Fernau, H., Niedermeier, R.: Graph separators: a parameterized view. J. Comput. Syst. Sci. 67(4), 808–832 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  3. Alber, J., Fernau, H., Niedermeier, R.: Parameterized complexity: exponential speed-up for planar graph problems. J. Algorithms 52(1), 26–56 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  4. Arora, S., Grigni, M., Karger, D., Klein, P.N., Woloszyn, A.: A polynomial-time approximation scheme for weighted planar graph TSP. In: Proceedings of the 9th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 1998), pp. 33–41. ACM, New York (1998)

    Google Scholar 

  5. Bian, Z., Gu, Q.-P., Marzban, M., Tamaki, H., Yoshitake, Y.: Study on branchwidth and branch decomposition of planar graphs. In: Proceedings of the 10th Workshop on Algorithm Engineering and Experiments (ALENEX 2008), pp. 152–165. ACM, New York (2008)

    Google Scholar 

  6. Bodlaender, H.L.: A tourist guide through treewidth. Acta Cybern. 11, 1–21 (1993)

    MATH  MathSciNet  Google Scholar 

  7. Cook, W., Seymour, P.: Tour merging via branch-decomposition. INFORMS J. Comput. 15, 233–248 (2003)

    Article  MathSciNet  Google Scholar 

  8. Deĭneko, V.G., Klinz, B., Woeginger, G.J.: Exact algorithms for the Hamiltonian cycle problem in planar graphs. Oper. Res. Lett. 34(2), 269–274 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  9. Demaine, E.D., Fomin, F.V., Hajiaghayi, M.T., Thilikos, D.M.: Subexponential parameterized algorithms on graphs of bounded genus and H-minor-free graphs. J. Assoc. Comput. Math. 52(6), 866–893 (2005)

    MathSciNet  Google Scholar 

  10. Demaine, E.D., Hajiaghayi, M.T.: Bidimensionality: new connections between FPT algorithms and PTASs. In: Proceedings of the 16th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2005), pp. 590–601. ACM, New York (2005)

    Google Scholar 

  11. Demaine, E.D., Hajiaghayi, M.T.: The bidimensionality theory and its algorithmic applications. Comput. J. 51(3), 292–302 (2008)

    Article  Google Scholar 

  12. Dorn, F., Fomin, F.V., Thilikos, D.M.: Fast subexponential algorithm for non-local problems on graphs of bounded genus. In: Proceedings of the 10th Scandinavian Workshop on Algorithm Theory (SWAT 2006). LNCS, vol. 4059, pp. 172–183. Springer, Berlin (2006)

    Google Scholar 

  13. Dorn, F., Fomin, F.V., Thilikos, D.M.: Catalan structures and dynamic programming on H-minor-free graphs. In: Proceedings of the 19th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2008), pp. 631–640. ACM, New York (2008)

    Google Scholar 

  14. Dorn, F., Fomin, F.V., Thilikos, D.M.: Subexponential parameterized algorithms. Comput. Sci. Rev. 2(1), 29–39 (2008)

    Article  Google Scholar 

  15. Dorn, F., Penninkx, E., Bodlaender, H.L., Fomin, F.V.: Efficient exact algorithms on planar graphs: Exploiting sphere cut branch decompositions. In: Proceedings of the 13th Annual European Symposium on Algorithms (ESA 2005). LNCS, vol. 3669, pp. 95–106. Springer, Berlin (2005)

    Google Scholar 

  16. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, New York (1999)

    Google Scholar 

  17. Eppstein, D.: Subgraph isomorphism in planar graphs and related problems. J. Graph Algorithms Appl. 3, 1–27 (1999)

    Article  MathSciNet  Google Scholar 

  18. Fomin, F.V., Thilikos, D.M.: New upper bounds on the decomposability of planar graphs. J. Graph Theory 51(1), 53–81 (2006)

    Article  MathSciNet  Google Scholar 

  19. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman, New York (1979)

    MATH  Google Scholar 

  20. Gu, Q.-P., Tamaki, H.: Optimal branch-decomposition of planar graphs in O(n 3) time. ACM Trans. Algorithms 4(3) (2008). Article 30

  21. Held, M., Karp, R.M.: A dynamic programming approach to sequencing problems. J. SIAM 10, 196–210 (1962)

    MATH  MathSciNet  Google Scholar 

  22. Hwang, R.Z., Chang, R.C., Lee, R.C.T.: The searching over separators strategy to solve some NP-hard problems in subexponential time. Algorithmica 9(4), 398–423 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  23. Kloks, T., Lee, C.M., Liu, J.: New algorithms for k-face cover, k-feedback vertex set, and k-disjoint cycles on plane and planar graphs. In: Proceedings of the 28th International Workshop on Graph-theoretic Concepts in Computer Science (WG 2002). Lecture Notes in Comput. Sci., vol. 2573, pp. 282–295. Springer, Berlin (2002)

    Chapter  Google Scholar 

  24. Kreweras, G.: Sur les partitions non croisées d’un circle. Discrete Math. 1(4), 333–350 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  25. Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G. (eds.): The Traveling Salesman Problem. Wiley, New York (1985)

    MATH  Google Scholar 

  26. Lipton, R.J., Tarjan, R.E.: A separator theorem for planar graphs. SIAM J. Appl. Math. 36(2), 177–189 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  27. Lipton, R.J., Tarjan, R.E.: Applications of a planar separator theorem. SIAM J. Comput. 9(3), 615–627 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  28. Marzban, M., Gu, Q.-P., Jia, X.: Computational study on dominating set problem of planar graphs. In: Proceedings of the Second International Conference on Combinatorial Optimization and Applications (COCOA 2008). Lecture Notes in Comput. Sci., vol. 5165, pp. 89–102. Springer, Berlin (2008)

    Google Scholar 

  29. Robertson, N., Seymour, P., Thomas, R.: Quickly excluding a planar graph. J. Comb. Theory, Ser. B 62, 323–348 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  30. Robertson, N., Seymour, P.D.: Graph minors X. Obstructions to tree-decomposition. J. Comb. Theory, Ser. B 52(2), 153–190 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  31. Seymour, P., Thomas, R.: Call routing and the ratcatcher. Combinatorica 15, 217–241 (1994)

    Article  MathSciNet  Google Scholar 

  32. Smith, W.D., Wormald, N.C.: Geometric separator theorems and applications. In: Proceedings of the 39th Annual IEEE Symposium on Foundations of Computer Science (FOCS 1998), pp. 232–243. IEEE Comput. Soc., Los Alamitos (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frederic Dorn.

Additional information

This work is supported by the Norwegian Research Council and partially by the Netherlands Organisation for Scientific Research NWO (project Treewidth and Combinatorial Optimisation).

A preliminary version of this paper appeared at ALGO-ESA’05 [15].

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dorn, F., Penninkx, E., Bodlaender, H.L. et al. Efficient Exact Algorithms on Planar Graphs: Exploiting Sphere Cut Decompositions. Algorithmica 58, 790–810 (2010). https://doi.org/10.1007/s00453-009-9296-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-009-9296-1

Keywords

Navigation